先后拋擲一枚質(zhì)地均勻的骰子(各面上分別標(biāo)有點(diǎn)數(shù)1,2,3,4,5,6)兩次,骰子朝上的面的點(diǎn)數(shù)依次記為a和b,則雙曲線(xiàn)
x2
a2
-
y2
b2
=1
為等軸雙曲線(xiàn)的概率為
 
分析:分別求出基本事件數(shù),和“點(diǎn)數(shù)相等”的種數(shù),再根據(jù)概率公式解答即可.
解答:解析:基本事件共6×6個(gè),
∵雙曲線(xiàn)
x2
a2
-
y2
b2
=1
為等軸雙曲線(xiàn),
∴a=b.
而點(diǎn)數(shù)相等的有(1,1)、(2,2)、(3,3)、(4、4)、(5,5)、(6,6)共6個(gè),
故概率為
6
36
=
1
6

故答案是
1
6
點(diǎn)評(píng):本小題考查古典概型及其概率計(jì)算公式,考查概率的求法:如果一個(gè)事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=
m
n
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

先后拋擲一枚質(zhì)地均勻的骰子(骰子的六個(gè)面上分別標(biāo)以數(shù)字1,2,3,4,5,6),骰子向上的數(shù)字依次記為a、b.
(Ⅰ)求a+b能被3整除的概率;
(Ⅱ)求使關(guān)于x的方程x2-ax+b=0有實(shí)數(shù)解的概率;
(Ⅲ)求使x,y方程組
x+by=3
2x+ay=2
有正數(shù)解的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆湖南師大附中高一下學(xué)期段考數(shù)學(xué)試卷(解析版) 題型:選擇題

先后拋擲一枚質(zhì)地均勻的硬幣兩次,則至少一次正面朝上的概率為

  A.                B.                C.               D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年浙江省杭州市高一上學(xué)期期末考試數(shù)學(xué)試卷 題型:解答題

.(本題滿(mǎn)分12

先后拋擲一枚質(zhì)地均勻的骰子(骰子的六個(gè)面上分別標(biāo)以數(shù)字),骰子向上的數(shù)字依次記為、.

(Ⅰ)求能被3整除的概率;

(Ⅱ)求使關(guān)于的方程有實(shí)數(shù)解的概率;

(Ⅲ)求使方程組有正數(shù)解的概率. 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省杭州二中高一(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

先后拋擲一枚質(zhì)地均勻的骰子(骰子的六個(gè)面上分別標(biāo)以數(shù)字1,2,3,4,5,6),骰子向上的數(shù)字依次記為a、b.
(Ⅰ)求a+b能被3整除的概率;
(Ⅱ)求使關(guān)于x的方程x2-ax+b=0有實(shí)數(shù)解的概率;
(Ⅲ)求使x,y方程組有正數(shù)解的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案