12.如圖,已知平面直角坐標系中,A、B兩點的坐標分別為A(2,-3)、B(4,-1).
(1)若P(x,0)是x軸上的一個動點,當△PAB的周長最短時,求x值;
(2)若C(a,0)、D(a+3,0)是x軸上的兩個動點,當四邊形ABDC的周長最短時,求a的值;
(3)設(shè)M、N分別為x軸、y軸上的動點,問:是否存在這樣的點M(m,0)和(0,π),使四邊形ABMV周長最短,若存在,求出m、n的值;若不存在,請說明理由.

分析 (1)根據(jù)題意,設(shè)出并找到B(4,-1)關(guān)于x軸的對稱點是B',其坐標為(4,1),進而可得直線AB'的解析式,進而可得答案;
(2)過A點作AE⊥x軸于點E,且延長AE,取A'E=AE.做點F(1,-1),連接A'F.利用兩點間的線段最短,可知四邊形ABDC的周長最短等于A'F+CD+AB,從而確定C點的坐標值.
(3)根據(jù)對稱軸的性質(zhì),可得存在使四邊形ABMN周長最短的點M、N,當且僅當m=$\frac{5}{2}$,n=-$\frac{5}{3}$時成立.

解答 解:(1)設(shè)點B(4,-1)關(guān)于x軸的對稱點是B',其坐標為(4,1),
設(shè)直線AB'的解析式為y=kx+b,
把A(2,-3),B'(4,1)代入得:$\left\{\begin{array}{l}{2k+b=-3}\\{4k+b=1}\end{array}\right.$,
解得$\left\{\begin{array}{l}{k=2}\\{b=-7}\end{array}\right.$,∴y=2x-7,
令y=0,得x=$\frac{7}{2}$,即當△PAB的周長最短時,x=$\frac{7}{2}$.
(2)過A點作AE⊥x軸于點E,且延長AE,取A'E=AE.
做點F(1,-1),連接A'F.那么A'(2,3).
直線A'F的解析式為y-1=$\frac{3-(-1)}{2-1}$•(x-1),即y=4x-5,
∵C點的坐標為(a,0),且在直線A'F上,
∴0=4a-5,解得a=$\frac{5}{4}$.
∴當四邊形ABDC的周長最短時,a=$\frac{5}{4}$.
(3)存在使四邊形ABMN周長最短的點M、N,
作A關(guān)于y軸的對稱點A′,作B關(guān)于x軸的對稱點B′,連接A′B′,與x軸、y軸的交點即為點M、N,
∴A′(-2,-3),B′(4,1),
∴直線A′B′的解析式為:y=$\frac{2}{3}$x-$\frac{5}{3}$,
∴M($\frac{5}{2}$,0),N(0,-$\frac{5}{3}$).
∴m=$\frac{5}{2}$,n=-$\frac{5}{3}$.

點評 本題考查當三角形的周長最短時,未知數(shù)的值的求法,考查當四邊形ABDC的周長最短時,未知數(shù)的值的求法,考查使四邊形ABMV周長最短時,未知數(shù)的值的是否存在的判斷與求法,是中檔題,解題時要認真審題,注意對稱知識的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知正四面體S-ABC的外接球O的半徑為$\sqrt{6}$,過AB中點E作球O的截面,則截面面積的最小值為( 。
A.B.C.$\frac{16}{3}π$D.$\frac{4}{3}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.$\overrightarrow a=(2,-3,\sqrt{3}),\overrightarrow b=(-1,0,0)$,則$\overrightarrow a,\overrightarrow b$的夾角為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知一個三棱柱,其底面是正三角形,且側(cè)棱與底面垂直,一個表面積為4π的球與該三棱柱的所有面均相切,那么這個三棱柱的側(cè)面積是$12\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在平面直角坐標系xOy中,以點A(2,0),曲線y=$\sqrt{1-{x^2}}$上的動點B,第一象限內(nèi)的點C,構(gòu)成等腰直角三角形ABC,且∠A=90°,則線段OC長的最大值是1+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若關(guān)于x的方程2x|x|-a|x|=1有三個不同實根,則實數(shù)a的取值范圍為(-∞,-2$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若點P在函數(shù)y=-x2+3lnx的圖象上,點Q在函數(shù)y=x+2的圖象上,則|PQ|的最小值為( 。
A.$\sqrt{2}$B.2C.2$\sqrt{2}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.棱長為4$\sqrt{3}$的正四面體內(nèi)切一球,然后在正四面體和該球形成的空隙處各放入一個小球,則這些小球的最大半徑為( 。
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{2}}{4}$D.$\frac{\sqrt{2}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知盒中有大小相同的3個紅球和2個白球,若每次不放回的從盒中取一個球,一直到取出所有白球時停止抽取,則停止抽取時恰好取到兩個紅球的概率為$\frac{3}{10}$.

查看答案和解析>>

同步練習(xí)冊答案