如圖,在平面直角坐標(biāo)系中,已知,,,直線與線段、分別交于點、.

(1)當(dāng)時,求以為焦點,且過中點的橢圓的標(biāo)準(zhǔn)方程;
(2)過點作直線于點,記的外接圓為圓.
①求證:圓心在定直線上;
②圓是否恒過異于點的一個定點?若過,求出該點的坐標(biāo);若不過,請說明理由.

(1)(2)①略②.

解析試題分析:(1)根據(jù)題意,,求出,可得到方程;(2)①解法一:根據(jù)題意寫出的坐標(biāo),線段的中垂線的交點就是圓心,將圓心坐標(biāo)代入中,可得證;解法二:設(shè)出一般方程,將三點的坐標(biāo)代入,聯(lián)立求解;②根據(jù)①,寫出圓系方程,聯(lián)立方程解得該定點.
試題解析:(1)設(shè)橢圓的方程為,
當(dāng)時, 的中點為,則                                   1分
,所以,                                           2分
故橢圓的標(biāo)準(zhǔn)方程為                                           3分
(Ⅱ)①解法一:易得直線,直線
可得,再由,得                      5分
則線段的中垂線方程為,                                         6分
線段的中垂線方程為,                                 7分
,                                                    8分
解得的外接圓的圓心坐標(biāo)為                              9分
經(jīng)驗證,該圓心在定直線上                                   10分
②由①可得圓C的方程為                  11分
該方程可整理為,
則由,解得,                        13分
所以圓恒過異于點的一個定點,該點坐標(biāo)為                      14分
解法二: 易得直線,直線           5分
所以可得,                                            6分
再由<

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C的中心在原點,焦點F在軸上,離心率,點在橢圓C上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若斜率為的直線交橢圓兩點,且、成等差數(shù)列,點M(1,1),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的長軸長為4,且過點
(1)求橢圓的方程;
(2)設(shè)、、是橢圓上的三點,若,點為線段的中點,、兩點的坐標(biāo)分別為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的頂點在坐標(biāo)原點,焦點在軸上,且過點.

(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)與圓相切的直線交拋物線于不同的兩點若拋物線上一點滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C長軸的兩個頂點為A(-2,0),B(2,0),且其離心率為.

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若N是直線x=2上不同于點B的任意一點,直線AN與橢圓C交于點Q,設(shè)直線QB與以NB為直徑的圓的一個交點為M(異于點B),求證:直線NM經(jīng)過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

拋物線與直線相切,是拋物線上兩個動點,為拋物線的焦點,的垂直平分線軸交于點,且.
(1)求的值;
(2)求點的坐標(biāo);
(3)求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

以直角坐標(biāo)系的原點O為極點,x軸的正半軸為極軸,且兩個坐標(biāo)系取相等的長度單位.已知直線的參數(shù)方程為 (t為參數(shù),0<a<),曲線C的極坐標(biāo)方程為
(1)求曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C相交于A、B兩點,當(dāng)a變化時,求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知動圓C經(jīng)過點,且在x軸上截得弦長為2,記該圓圓心的軌跡為E.
(Ⅰ)求曲線E的方程;
(Ⅱ)過點的直線m交曲線E于A,B兩點,過A,B兩點分別作曲線E的切線,兩切線交于點C,當(dāng)△ABC的面積為時,求直線m的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是橢圓的右焦點,圓軸交于兩點,是橢圓與圓的一個交點,且.
(Ⅰ)求橢圓的離心率;
(Ⅱ)過點與圓相切的直線的另一交點為,且的面積等于,求橢圓的方程.

查看答案和解析>>

同步練習(xí)冊答案