【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為(其中為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立的極坐標(biāo)系中,曲線的極坐標(biāo)方程為,曲線的直角坐標(biāo)方程為.

(1)求直線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

(2)若直線與曲線分別相交于異于原點(diǎn)的點(diǎn),求的取值范圍.

【答案】(1) 直線的極坐標(biāo)方程為:.的直角坐標(biāo)方程為. (2)

【解析】

1)由直線的參數(shù)方程可知,直線過原點(diǎn)且傾斜角直線的為的直線,由此可表示出直線的極坐標(biāo);利用極坐標(biāo)與直角坐標(biāo)的互化公式即可得到曲線的直角坐標(biāo)方程;

(2)點(diǎn)的極坐標(biāo)分別為,得到|PQ| ,再利用三角函數(shù)的性質(zhì)求出的取值范圍。

解:(1)因?yàn)橹本的參數(shù)方程為(其中為參數(shù)),

所以直線表示過原點(diǎn)且傾斜角直線的為的直線,則其極坐標(biāo)方程為:

.

曲線的極坐標(biāo)方程可化為,

,

因此曲線的直角坐標(biāo)方程為.

(2)設(shè)點(diǎn)的極坐標(biāo)分別為,

因?yàn)?/span>,即,所以的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且過點(diǎn),若點(diǎn)在橢圓C上,則點(diǎn)稱為點(diǎn)M的一個橢點(diǎn)”.

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)若直線與橢圓C相交于A,B兩點(diǎn),且A,B兩點(diǎn)的橢點(diǎn)分別為P,Q,以PQ為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),試判斷的面積是否為定值?若為定值,求出定值;若不為定值,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐中,底面為矩形, .側(cè)面底面.

(1)證明: ;

(2)設(shè)與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系xOy中,橢圓C:(a>b>0)離心率為,其短軸長為2.

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)如圖,A為橢圓C的左頂點(diǎn),P,Q為橢圓C上兩動點(diǎn),直線PO交AQ于E,直線QO交AP于D,直線OP與直線OQ的斜率分別為k1,k2,且k1k2,(λ,μ為非零實(shí)數(shù)),求λ22的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過拋物線的焦點(diǎn)作直線交拋物線于兩點(diǎn),已知點(diǎn),為坐標(biāo)原點(diǎn).的最小值為3.

(1)求拋物線的方程;

(2)過點(diǎn)作直線,交拋物線于兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《山東省高考改革試點(diǎn)方案》規(guī)定:從年高考開始,高考物理、化學(xué)等六門選考科目的考生原始成績從高到低劃分為八個等級.參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為.選考科目成績計入考生總成績時,將等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則分別轉(zhuǎn)換到八個分?jǐn)?shù)區(qū)間,得到考生的等級成績.

某校級學(xué)生共人,以期末考試成績?yōu)樵汲煽冝D(zhuǎn)換了本校的等級成績,為學(xué)生合理選科提供依據(jù),其中物理成績獲得等級的學(xué)生原始成績統(tǒng)計如下

成績

93

91

90

88

87

86

85

84

83

82

人數(shù)

1

1

4

2

4

3

3

3

2

7

(1)從物理成績獲得等級的學(xué)生中任取名,求恰好有名同學(xué)的等級分?jǐn)?shù)不小于的概率;

(2)待到本級學(xué)生高考結(jié)束后,從全省考生中不放回的隨機(jī)抽取學(xué)生,直到抽到名同學(xué)的物理高考成績等級為結(jié)束(最多抽取人),設(shè)抽取的學(xué)生個數(shù)為,求隨機(jī)變量的數(shù)學(xué)期望(注: ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是函數(shù)的部分圖象,將函數(shù)f(x)的圖象向右平移個單位長度得到g(x)的圖象,給出下列四個命題:

①函數(shù)f(x)的表達(dá)式為;

②g(x)的一條對稱軸的方程可以為;

③對于實(shí)數(shù)m,恒有;

④f(x)+g(x)的最大值為2.其中正確的個數(shù)有( 。

A. 1個B. 2個C. 3個D. 4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-5:不等式選講]

已知函數(shù)f(x)=|2x﹣1|+|x+1|,g(x)=|x﹣a|+|x+a|.

(Ⅰ)解不等式f(x)>9;

(Ⅱ)x1∈R,x2R,使得f(x1)=g(x2),求實(shí)數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=ax2+a-2lnx+1aR).

1)若函數(shù)在點(diǎn)(1,f1))處的切線平行于直線y=4x+3,求a的值;

2)令cx=fx+3-alnx+2a,討論cx)的單調(diào)性;

3a=1時,函數(shù)y=fx)圖象上的所有點(diǎn)都落在區(qū)域內(nèi),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案