【題目】抽樣統(tǒng)計甲、乙兩名學(xué)生的5次訓(xùn)練成績(單位:分),結(jié)果如下:

學(xué)生

第1次

第2次

第3次

第4次

第5次

65

80

70

85

75

80

70

75

80

70

則成績較為穩(wěn)定(方差較小)的那位學(xué)生成績的方差為

【答案】20
【解析】解:根據(jù)題意,對于甲,其平均數(shù) = =75,其方差S2= [(65﹣75)2+(80﹣75)2+(70﹣75)2+(85﹣75)2+(75﹣75)2]=50; 對于乙,其平均數(shù) = =75,其方差S2= [(80﹣75)2+(70﹣75)2+(75﹣75)2+(80﹣75)2+(70﹣75)2]=20;
比較可得:S2>S2 , 則乙的成績較為穩(wěn)定;
所以答案是:20.
【考點精析】解答此題的關(guān)鍵在于理解極差、方差與標(biāo)準(zhǔn)差的相關(guān)知識,掌握標(biāo)準(zhǔn)差和方差越大,數(shù)據(jù)的離散程度越大;標(biāo)準(zhǔn)差和方程為0時,樣本各數(shù)據(jù)全相等,數(shù)據(jù)沒有離散性;方差與原始數(shù)據(jù)單位不同,解決實際問題時,多采用標(biāo)準(zhǔn)差.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是邊長為2的菱形,平面,

1)證明:平面平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)經(jīng)過一年的新農(nóng)村建設(shè),農(nóng)村的經(jīng)濟收入增加了一倍.實現(xiàn)翻番.為更好地了解該地區(qū)農(nóng)村的經(jīng)濟收入變化情況,統(tǒng)計了該地區(qū)新農(nóng)村建設(shè)前后農(nóng)村的經(jīng)濟收入構(gòu)成比例.得到如下餅圖:

則下面結(jié)論中不正確的是

A. 新農(nóng)村建設(shè)后,種植收入減少

B. 新農(nóng)村建設(shè)后,其他收入增加了一倍以上

C. 新農(nóng)村建設(shè)后,養(yǎng)殖收入增加了一倍

D. 新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過了經(jīng)濟收入的一半

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù),).

(1)判斷曲線在點處的切線與曲線的公共點個數(shù);

(2)當(dāng)時,若函數(shù)有兩個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C1 (參數(shù)θ∈R),以坐標(biāo)原點O為極點,x軸的非負半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為 ,點Q的極坐標(biāo)為
(1)將曲線C2的極坐標(biāo)方程化為直角坐標(biāo)方程,并求出點Q的直角坐標(biāo);
(2)設(shè)P為曲線C1上的點,求PQ中點M到曲線C2上的點的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校將從4名男生和4名女生中選出4人分別擔(dān)任辯論賽中的一、二、三、四辯手,其中男生甲不適合擔(dān)任一辯手,女生乙不適合擔(dān)任四辯手.現(xiàn)要求:如果男生甲入選,則女生乙必須入選.那么不同的組隊形式有_________種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某家電專賣店試銷A、B、C三種新型空調(diào),連續(xù)五周銷售情況如表所示:

第一周 第二周 第三周 第四周 第五周

A型數(shù)量/臺 12 8 15 22 18

B型數(shù)量/臺 7 12 10 10 12

C型數(shù)量/臺

(I)求A型空調(diào)平均每周的銷售數(shù)量;

(Ⅱ)為跟蹤調(diào)查空調(diào)的使用情況,從該家電專賣店第二周售出的A、B型空調(diào)銷售記錄中,隨機抽取一臺,求抽到B型空調(diào)的概率;

(III)已知C型空調(diào)連續(xù)五周銷量的平均數(shù)為7,方差為4,且每周銷售數(shù)量互不相同,求C型空調(diào)這五周中的最大銷售數(shù)量。(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(2ωx﹣ )(ω>0)的最小正周期為4π,則(
A.函數(shù)f(x)的圖象關(guān)于點( ,0)對稱
B.函數(shù)f(x)的圖象關(guān)于直線x= 對稱
C.函數(shù)f(x)的圖象在( ,π)上單調(diào)遞減
D.函數(shù)f(x)的圖象在( ,π)上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=sinx的圖象向右平移 個單位,再將所得函數(shù)圖象上所有點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)y=sin(ωx+φ),(ω>0,|φ|< )的圖象,則(
A.ω=2,φ=﹣
B.ω=2,φ=﹣
C.ω= ,φ=﹣
D.ω= ,φ=﹣

查看答案和解析>>

同步練習(xí)冊答案