18.若等差數(shù)列{an}的前n項(xiàng)和為Sn,且S6=3,a4=2,則a5等于( 。
A.5B.6C.7D.8

分析 利用等差數(shù)列的通項(xiàng)公式與求和公式即可得出.

解答 解:設(shè)等差數(shù)列{an}的公差為d,∵S6=3,a4=2,
∴6a1+$\frac{6×5}{2}$d=3,a1+3d=2,
解得a1=-7,d=3.
則a5=-7+3×4=5,
故選:A.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知數(shù)列{an} 為等比數(shù)列,等差數(shù)列{bn} 的前n 項(xiàng)和為Sn (n∈N* ),且滿足:S13=208,S9-S7=41,a1=b2,a3=b3
(1)求數(shù)列{an},{bn} 的通項(xiàng)公式;
(2)設(shè)Tn=a1b1+a2b2+…+anbn (n∈N* ),求Tn; 
(3)設(shè)cn=$\left\{\begin{array}{l}{{a}_{n},n為奇數(shù)}\\{_{n},n為偶數(shù)}\end{array}\right.$,問(wèn)是否存在正整數(shù)m,使得cm•cm+1•cm+2+8=3(cm+cm+1+cm+2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.某重點(diǎn)高中擬把學(xué)校打造成新型示范高中,為此制定了學(xué)生“七不準(zhǔn)”,“一日三省十問(wèn)”等新的規(guī)章制度.新規(guī)章制度實(shí)施一段時(shí)間后,學(xué)校就新規(guī)章制度隨機(jī)抽取部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,調(diào)查卷共有10個(gè)問(wèn)題,每個(gè)問(wèn)題10分,調(diào)查結(jié)束后,按分?jǐn)?shù)分成5組:[50,60),60,70),[70,80),[80,90),[90,100],并作出頻率分布直方圖與樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).
(1)求樣本容量n和頻率分布直方圖中的x、y的值;
(2)在選取的樣本中,從分?jǐn)?shù)在70分以下的學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行座談會(huì),求所抽取的2名學(xué)生中恰有一人得分在[50,60)內(nèi)的概率.
5
6
7
8
9
3  4



1  2  3  4  5  6   7  8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)f(x)在定義域(0,+∞)上是單調(diào)函數(shù),若對(duì)任意x∈(0,+∞),都有$f[f(x)-\frac{1}{x}]=2$,則$f(\frac{1}{7})$的值是( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知數(shù)列{an}是等比數(shù)列,數(shù)列{bn}是等差數(shù)列,若a1•a5•a9=-8,b2+b5+b8=6π,則$cos\frac{{{b_4}+{b_6}}}{{1-{a_3}•{a_7}}}$的值是(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{1}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若等差數(shù)列{an}的公差為2,且a5是a2與a6的等比中項(xiàng),則該數(shù)列的前n項(xiàng)和Sn取最小值時(shí),n的值等于( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.給出下列函數(shù):①f(x)=$\frac{{{x^2}-1}}{x-1}$,g(x)=x+1;②f(x)=|x|,g(x)=$\sqrt{x^2}$;③f(x)=x2-2x-1,g(t)=t2-2t-1.其中,是同一函數(shù)的是( 。
A.①②③B.①③C.②③D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知f(x)=$\frac{x+1}{x}$,則f(1)等于( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)集合A=R,集合B={y|y>0},下列對(duì)應(yīng)關(guān)系中是從集合A到集合B的映射的是( 。
A.x→y=|x|B.x→y=$\frac{1}{{{{({x-1})}^2}}}$C.$x→y={({\frac{1}{2}})^x}$D.$x→y=\sqrt{{{({\frac{1}{2}})}^x}-1}$

查看答案和解析>>

同步練習(xí)冊(cè)答案