【題目】關(guān)于x的方程22x﹣(m﹣1)2x+2=0在x∈[0,2]時有唯一解,求m取值范圍.

【答案】解:令2x=t,則t∈[1,4], ∴方程t2﹣(m﹣1)t+2=0在[1,4]上有唯一解.
①若△=(m﹣1)2﹣8=0,即m=1±2 時,
若m=1+2 ,則t= ,符合題意,
若m=1﹣2 ,則t=﹣ ,不符合題意.
②若△=(m﹣1)2﹣8>0,即m<1﹣2 或m>1+2 時,
若t=1是方程的解,由根與系數(shù)的關(guān)系可知t=2也是方程的解,與方程在[1,4]上有唯一解矛盾;
若t=4是方程的解,由根與系數(shù)的關(guān)系可知t= 也是方程的解,符合題意;
此時m﹣1=4+ ,∴m=
若方程的解在(1,4)上,根據(jù)零點的存在性定理可知(4﹣m)(22﹣4m)<0,
解得4<m<
綜上,m的取值范圍是(4, ]∪{1+2 }
【解析】令2x=t,在方程t2﹣(m﹣1)t+2=0在[1,4]上有唯一解,對判別式和區(qū)間端點值進行討論,利用二次函數(shù)的性質(zhì)和零點的存在性定理得出a的范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若直線l1:y=x,l2:y=x+2與圓C:x2+y2﹣2mx﹣2ny=0的四個交點把圓C分成的四條弧長相等,則m=(
A.0或1
B.0或﹣1
C.1或﹣1
D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列是公差為正數(shù)的等差數(shù)列,其前項和為,且,

(1)求數(shù)列的通項公式;

(2)數(shù)列滿足, .①求數(shù)列的通項公式;②是否存在正整數(shù), ),使得, , 成等差數(shù)列?若存在,求出 的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=2sin4x+2cos4x+cos22x﹣3.
(1)求函數(shù)f(x)的最小正周期.
(2)求函數(shù)f(x)在閉區(qū)間[ ]上的最小值并求當(dāng)f(x)取最小值時,x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù)f(x)=4sin(2x )(x∈R),有下列命題: ①y=f(x)的表達式可改寫為y=4cos(2x﹣ );
②y=f(x)是以2π為最小正周期的周期函數(shù);
③y=f(x)的圖象關(guān)于點 對稱;
④y=f(x)的圖象關(guān)于直線x=﹣ 對稱.
其中正確的命題的序號是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016622 日,“國際教育信息化大會在山東青島開幕.為了解哪些人更關(guān)注“國際教育信息化大會,某機構(gòu)隨機抽取了年齡在15-75歲之間的100人進行調(diào)查,經(jīng)統(tǒng)計“青少年”與“中老年”的人數(shù)之比為9: 11.

1根據(jù)已知條件完成下面的列聯(lián)表,并判斷能否有的把握認為“中老年比“青少年”更加關(guān)注“國際教育信息化大會

2現(xiàn)從抽取的青少年中采用分層抽樣的辦法選取9人進行問卷調(diào)查.在這9人中再選取3人進行面對面詢問,記選取的3人中關(guān)注“國際教育信息化大會”的人數(shù)為,的分布列及數(shù)學(xué)期望.

:參考公式,其中.

臨界值表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的左、右頂點分別為,上、下頂點分別為,兩個焦點分別為, 四邊形的面積是四邊形的面積的2.

1求橢圓的方程;

2過橢圓的右焦點且垂直于軸的直線交橢圓兩點 是橢圓上位于直線兩側(cè)的兩點.若直線過點,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的中心在原點,焦點在x軸上,離心率 .已知點 到這個橢圓上的點的最遠距離為 ,求這個橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形ABCD中,AD∥BC,AD⊥AB,AD=1,BC=2,AB=3,P是AB上的一個動點,∠CPB=α,∠DPA=β. (Ⅰ)當(dāng) 最小時,求tan∠DPC的值;
(Ⅱ)當(dāng)∠DPC=β時,求 的值.

查看答案和解析>>

同步練習(xí)冊答案