分析 (1)由已知及正弦定理即可解得c的值.
(2)由已知利用同角三角函數(shù)基本關系式可求cosB的值,利用三角形內角和定理,兩角和的正弦函數(shù)公式即可計算求值得解.
解答 解:(1)∵C=45°,b=4$\sqrt{5}$,sinB=$\frac{2\sqrt{5}}{5}$.
∴由正弦定理可得:c=$\frac{bsinC}$=$\frac{4\sqrt{5}×\frac{\sqrt{2}}{2}}{\frac{2\sqrt{5}}{5}}$=5$\sqrt{2}$.
(2)∵sinB=$\frac{2\sqrt{5}}{5}$,B為銳角,
∴cosB=$\sqrt{1-si{n}^{2}B}$=$\frac{\sqrt{5}}{5}$,
sinA=sin(B+C)=sinBcosC+cosBsinC=$\frac{2\sqrt{5}}{5}$×$\frac{\sqrt{2}}{2}$+$\frac{\sqrt{2}}{2}$×$\frac{\sqrt{5}}{5}$=$\frac{3\sqrt{10}}{10}$.
點評 本題主要考查了正弦定理,同角三角函數(shù)基本關系式,三角形內角和定理,兩角和的正弦函數(shù)公式在解三角形中的應用,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | -6 | C. | 2 | D. | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com