試通過圓和球的類比,由“半徑為R的圓內(nèi)接矩形中,以正方形的面積最大,最大值為”,猜測關(guān)于球的相應(yīng)命題由 。
半徑為R的球內(nèi)接長方體中,以正方體的體積最大,最大值為 ;
【解析】解:在由平面幾何的性質(zhì)類比推理空間立體幾何性質(zhì)時(shí),
一般為:由平面幾何中點(diǎn)的性質(zhì),類比推理空間幾何中線的性質(zhì);
由平面幾何中線的性質(zhì),類比推理空間幾何中面的性質(zhì);
由平面幾何中面的性質(zhì),類比推理空間幾何中體的性質(zhì);
故由:“周長一定的所有矩形中,正方形的面積最大”,
類比到空間可得的結(jié)論是:
“半徑為R的球的內(nèi)接長方體中以正方體的體積為最大,最大值為”
故答案為:“半徑為R的球的內(nèi)接長方體中以正方體的體積為最大,最大值為.”
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com