11.(1)若a,b,c,x,y,z>0,求證:(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2;
(2)若a,b,c>0,且a+b+c=1,求證:$\sqrt{a}$+$\sqrt{2b}$+$\sqrt{3c}$≤$\sqrt{6}$.

分析 (1)展開式后利用基本不等式即可證明,
(2)根據(jù)(1),即可證明.

解答 證明:(1)(a2+b2+c2)(x2+y2+z2)=a2x2+a2y2+a2z2+b2x2+b2y2+b2z2+c2x2+c2y2+c2z2=(a2x2+b2y2+c2z2)+(a2y2+b2x2)+(a2z2+c2x2)+(b2z2+c2y2)≥(a2x2+b2y2+c2z2)+2abxy+2acxz+2bcyz=(ax+by+cz)2
當(dāng)且僅當(dāng)ay=bx,az=cx,bz=cy即$\frac{a}{x}=\frac{y}=\frac{c}{z}$時(shí)取等號(hào).
(2)由(1)知:$\sqrt{a}+\sqrt{2b}+\sqrt{3c}=1•\sqrt{a}+\sqrt{2}•\sqrt+\sqrt{3}•\sqrt{c}$$≤\sqrt{1+2+3}•\sqrt{a+b+c}=\sqrt{6}$,
當(dāng)且僅當(dāng)$\frac{1}{{\sqrt{a}}}=\frac{{\sqrt{2}}}{{\sqrt}}=\frac{{\sqrt{3}}}{{\sqrt{c}}}$時(shí),即$a=\frac{1}{6},b=\frac{1}{3},c=\frac{1}{2}$時(shí)取等號(hào)

點(diǎn)評(píng) 本題考查了基本不等式的應(yīng)用和不等式的證明,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如果發(fā)現(xiàn)散點(diǎn)圖中所有的樣本點(diǎn)都在一條直線上,則殘差平方和等于0,解釋變量和預(yù)報(bào)變量之間的相關(guān)系數(shù)等于1或-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)y=f(x)的圖象在點(diǎn)(1,f(1))處的切線方程是2x-y+1=0,若g(x)=$\frac{x}{f(x)}$,則g′(1)=( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{9}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.${(2-\sqrt{x})^6}$展開式中不含x2項(xiàng)的系數(shù)的和為( 。
A.60B.-59C.-61D.61

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\sqrt{3}$sin(ωx+ϕ)-cos(ωx+ϕ)(0<ϕ<π,ω>0)為偶函數(shù),且函數(shù)y=f(x)圖象的兩相鄰對(duì)稱軸之間的距離為$\frac{π}{2}$.
(1)求f($\frac{π}{8}$)的值;
(2)求函數(shù)y=f(x)+f(x+$\frac{π}{4}$)的最大值及對(duì)應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.直線x-y+m=0與圓x2+y2-2x+1=0有兩個(gè)不同交點(diǎn)的一個(gè)充分不必要條件是( 。
A.0<m<1B.-4<m<2C.m<1D.-3<m<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若$\frac{1}{x}$-$\frac{1}{y}$=2,則$\frac{3x+xy-3y}{x-xy-y}$的值為( 。
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.-$\frac{5}{3}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在海濱某城市附近海面有一臺(tái)風(fēng),據(jù)監(jiān)測(cè),臺(tái)風(fēng)中心位于城市A的南偏東15°方向、距城市120$\sqrt{3}$km的海面P處,并以20km/h的速度向北偏西45°方向移動(dòng),如果臺(tái)風(fēng)侵襲的范圍為圓型區(qū)域,半徑為120km,幾小時(shí)后該城市開始受到臺(tái)風(fēng)的侵襲?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.若x,y滿足約束條件$\left\{\begin{array}{l}x-1≥0\\ x-y≤0\\ x+y-4≤0\end{array}\right.$,則$\frac{y}{x+1}$的最大值為$\frac{3}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案