分析:本題考查的知識(shí)點(diǎn)是分段函數(shù)的性質(zhì)及對(duì)數(shù)的運(yùn)算性質(zhì),要求f(2009)的值,則函數(shù)的函數(shù)值必然呈周期性變化,由函數(shù)的解析式
f(x)= | log 2(1-x),x≤0 | f(x-1)-f(x-2),x>0 |
| |
,我們列出函數(shù)的前若干項(xiàng)的值,然后歸納出函數(shù)的周期,即可求出f(2009)的值.
解答:解:由已知得f(-1)=log22=1,f(0)=0,
f(1)=f(0)-f(-1)=-1,
f(2)=f(1)-f(0)=-1,
f(3)=f(2)-f(1)=-1-(-1)=0,
f(4)=f(3)-f(2)=0-(-1)=1,
f(5)=f(4)-f(3)=1,
f(6)=f(5)-f(4)=0,
所以函數(shù)f(x)的值以6為周期重復(fù)性出現(xiàn).,所以f(2009)=f(5)=1,故選C.
故選C.
點(diǎn)評(píng):分段函數(shù)分段處理,這是研究分段函數(shù)圖象和性質(zhì)最核心的理念,具體做法是:分段函數(shù)的定義域、值域是各段上x、y取值范圍的并集,分段函數(shù)的奇偶性、單調(diào)性要在各段上分別論證;分段函數(shù)的最大值,是各段上最大值中的最大者.