分析 (1)利用小反彈的體積公式,寫出V(x)的解析式;
(2)記y=$\frac{V(x)}{x}$,利用配方法,即可得到當(dāng)x為何值時(shí),y最小,并求出最小值.
解答 解:(1)由題意,V(x)=(2a-2x)(a-2x)x(0<x≤1);
(2)y=$\frac{V(x)}{x}$=(2a-2x)(a-2x)=$4(x-\frac{3}{4}a)^{2}-\frac{1}{4}{a}^{2}$,
∵a>2,0<x≤1,∴x=1時(shí),y最小,最小值為2(a-1)(a-2).
點(diǎn)評(píng) 本題考查利用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題,考查配方法的運(yùn)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ?x∈(0,+∞),lnx≠x-1 | B. | ?x∉(0,+∞),lnx=x-1 | ||
C. | ?x0∈(0,+∞),lnx0≠x0-1 | D. | ?x0∉(0,+∞),lnx0=x0-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com