分析:(1)由2S
n+1+a
n+1+4S
n+1S
n=0,可得2S
n+1+S
n+1-S
n+4S
n+1S
n=0即3S
n+1-S
n+4S
nS
n+1=0變形可得,
-=4,從而可得
{+2}為等比數(shù)列,可求S
n,利用
an=可求a
n(2)由(1)知,
bn=(2n+1)•(+2)=(2n+1)•3
n,利用乘公比錯(cuò)位相減法求和
解答:解:(1)∵2S
n+1+a
n+1+4S
n+1S
n=0
∴2S
n+1+S
n+1-S
n+4S
n+1S
n=0
即3S
n+1-S
n+4S
nS
n+1=0
兩邊同時(shí)除以S
nS
n+1可得,
-=4從而可得,
+2=3(+2),
+2=3∴
{+2}以3為首項(xiàng),以3為公比的等比數(shù)列
由等比數(shù)列的通項(xiàng)公式可得,
+2=3
n∴
Sn=當(dāng)n≥2時(shí),
an=Sn-Sn-1=-a
1=1不適合上式
故
an=,n∈N*(2)由(1)知,
bn=(2n+1)•(+2)=(2n+1)•3
n∴T
n=3•3
1+5•3
2+…+(2n-1)•3
n-1+(2n+1)•3
n∴3T
n=3•3
2+5•3
3+…+(2n-1)•3
n+(2n+1)•3
n+1兩式相減可得,-2T
n=9+2(3
2+3
3+…+3
n)-(2n+1)•3
n+1整理可得,T
n=n•3
n+1 點(diǎn)評(píng):本題主要考查了利用數(shù)列的遞推公式求解數(shù)列的通項(xiàng)公式,解決問(wèn)題的關(guān)鍵是根據(jù)已知條件構(gòu)造等比數(shù)列,二乘公比錯(cuò)位相減求數(shù)列的和是數(shù)列部分的重要方法,要注意掌握.