【題目】已知直線,過點(diǎn)的直線分別與直線交于,其中點(diǎn)在第三象限,點(diǎn)在第二象限,點(diǎn);

1)若的面積為,求直線的方程;

2)直線交于點(diǎn),直線于點(diǎn),若直線的斜率均存在,分別設(shè)為,判斷是否為定值?若為定值,求出該定值;若不為定值,說明理由.

【答案】(1)(2)為定值,詳見解析

【解析】

1)設(shè)直線方程為,與直線,分別聯(lián)立,可得的縱坐標(biāo),再由的面積為,解方程可得k,進(jìn)而得到所求直線方程;

2)求得A,B的坐標(biāo),設(shè),運(yùn)用三點(diǎn)共線的條件:斜率相等,求得,,再由兩點(diǎn)的斜率公式,化簡整理,計(jì)算即可得到所求定值.

解:(1)設(shè)直線方程為

與直線,分別聯(lián)立,

可得的縱坐標(biāo)分別為,

的面積為16

,

解得,

∴直線l的方程為

2)由(1)可得,

,設(shè),

共線,可得

,解得,

即有,

共線,可得

,解得

即有,

,

即有為定值

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)圓的圓心為,直線過點(diǎn)且與軸不重合,直線交圓兩點(diǎn),過點(diǎn)的平行線交于點(diǎn).

1)證明為定值,并寫出點(diǎn)的軌跡方程;

2)設(shè)點(diǎn)的軌跡為曲線,直線,兩點(diǎn),過點(diǎn)且與直線垂直的直線與圓交于,兩點(diǎn),求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過、、三點(diǎn).

1)求橢圓的方程;

2)若直線)與橢圓交于、兩點(diǎn),證明直線與直線的交點(diǎn)在直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為,其中為參數(shù),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為.

(1)求直線的直角坐標(biāo)方程與曲線的普通方程;

(2)若是曲線上的動(dòng)點(diǎn),為線段的中點(diǎn).求點(diǎn)到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,圓C:x2+y2+4x-2y+m=0與直線相切.

(1)求圓C的方程;

(2)若圓C上有兩點(diǎn)M,N關(guān)于直線x+2y=0對稱,且,求直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的短軸長為,且離心率為,圓

(1)求橢圓C的方程,

(2)點(diǎn)P在圓D上,F為橢圓右焦點(diǎn),線段PF與橢圓C相交于Q,若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)若曲線在點(diǎn)處的切線與軸平行,求;

(2)當(dāng)時(shí),函數(shù)的圖象恒在軸上方,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究所計(jì)劃利用神七宇宙飛船進(jìn)行新產(chǎn)品搭載實(shí)驗(yàn),計(jì)劃搭載新產(chǎn)品A、B,要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品重量、搭載實(shí)驗(yàn)費(fèi)用和預(yù)計(jì)產(chǎn)生收益來決定具體安排,通過調(diào)查,有關(guān)數(shù)據(jù)如表:


產(chǎn)品A()

產(chǎn)品B()


研制成本與塔載
費(fèi)用之和(萬元/)

20

30

計(jì)劃最大資
金額300萬元

產(chǎn)品重量(千克/)

10

5

最大搭載
重量110千克

預(yù)計(jì)收益(萬元/)

80

60


試問:如何安排這兩種產(chǎn)品的件數(shù)進(jìn)行搭載,才能使總預(yù)計(jì)收益達(dá)到最大,最大收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時(shí),判斷函數(shù)的單調(diào)性;

(Ⅱ)當(dāng)時(shí),證明:.(為自然對數(shù)的底數(shù))

查看答案和解析>>

同步練習(xí)冊答案