如圖,已知圓錐體的側(cè)面積為,底面半徑互相垂直,且,是母線的中點(diǎn).

(1)求圓錐體的體積;
(2)異面直線所成角的大。ńY(jié)果用反三角函數(shù)表示).
(1)   (2)異面直線SO與P成角的大arctan
本試題主要考查了圓錐的體積和異面直線的所成的角的大小的求解。
第一問中,由題意,,故
從而體積.2中取OB中點(diǎn)H,聯(lián)結(jié)PH,AH.
由P是SB的中點(diǎn)知PH//SO,則(或其補(bǔ)角)就是異面直線SO與PA所成角.
由SO平面OAB,PH平面OAB,PHAH.在OAH中,由OAOB得;
中,,PH=1/2SB=2,,
,所以異面直線SO與P成角的大arctan
解:(1)由題意,,
從而體積.
(2)如圖2,取OB中點(diǎn)H,聯(lián)結(jié)PH,AH.

由P是SB的中點(diǎn)知PH//SO,則(或其補(bǔ)角)就是異面直線SO與PA所成角.
由SO平面OAB,PH平面OAB,PHAH.
OAH中,由OAOB得
中,,PH=1/2SB=2,,
,所以異面直線SO與P成角的大arctan
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分9分)平行四邊形ABCD中,AB=2,AD=,且,以BD為折線,把折起,使平面,連AC.
(Ⅰ)求證:       (Ⅱ)求二面角B-AC-D平面角的大;
(Ⅲ)求四面體ABCD外接球的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖,已知矩形所在平面與矩形所在平面垂直,,=1,,是線段的中點(diǎn).
(1)求證:平面;
(2)求多面體的表面積;
(3)求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,長(zhǎng)方體中,底面是正方形,的中點(diǎn),是棱上任意一點(diǎn)。
(Ⅰ)證明: ;
(Ⅱ)如果="2" ,=,, 求 的長(zhǎng)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

一個(gè)正三棱柱的底面的邊長(zhǎng)為6,側(cè)棱長(zhǎng)為4,則這個(gè)棱柱的表面積為___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,多面體ABCDS中,面ABCD為矩形,, 。(I)求多面體ABCDS的體積;(II)求AD與SB所成角的余弦值;(III)求二面角A—SB—D的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M為棱DD1上的一點(diǎn)。

Ⅰ求三棱錐A-MCC1的體積;
Ⅱ當(dāng)A1M+MC取得最小值時(shí),求證:B1M⊥平面MAC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn)A(1,2,-1),點(diǎn)C與點(diǎn)A關(guān)于xOy面對(duì)稱,點(diǎn)B與點(diǎn)A關(guān)于x軸對(duì)稱,則|BC|的值為                            (      )
A.B.4 C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

根據(jù)下列三視圖(如下圖所示),則它的體積是(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案