【題目】已知函數(shù).

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2)設(shè),當(dāng)時(shí),對(duì)任意,存在,使得,求實(shí)數(shù)的取值范圍.

【答案】1)當(dāng)時(shí),單調(diào)減區(qū)間是,單調(diào)增區(qū)間是;當(dāng)時(shí),單調(diào)增區(qū)間是,沒(méi)有單調(diào)減區(qū)間;(2.

【解析】

1)先求函數(shù)的定義域,利用函數(shù)的導(dǎo)函數(shù),得,當(dāng)時(shí),分,討論即可得到答案;

2)當(dāng)時(shí),由(1)知上單調(diào)遞減,在上單調(diào)遞增,

從而上的最小值為,由題意得,即,令,求新函數(shù)的最大值即可得實(shí)數(shù)的取值范圍.

1)函數(shù)的定義域?yàn)?/span>,

,得.

當(dāng)時(shí),由,

當(dāng)時(shí),當(dāng)時(shí)都有;

當(dāng)時(shí),單調(diào)減區(qū)間是,單調(diào)增區(qū)間是,;

當(dāng)時(shí),單調(diào)增區(qū)間是,沒(méi)有單調(diào)減區(qū)間.

2)當(dāng)時(shí),由(1)知上單調(diào)遞減,在上單調(diào)遞增,

從而上的最小值為.

對(duì)任意,存在,使得,

即存在,使的值不超過(guò)在區(qū)間上的最小值.

,.

,則當(dāng)時(shí),.

當(dāng)時(shí);當(dāng)時(shí),,.

上單調(diào)遞減,

從而

從而.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),的導(dǎo)函數(shù),.

(1)當(dāng)時(shí),判斷函數(shù)上是否存在零點(diǎn),并說(shuō)明理由;

(2)若上存在最小值,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知對(duì)于任意,函數(shù)的圖像在上都有三個(gè)不同交點(diǎn).

1)寫(xiě)出的解析式,并求函數(shù)的最大值及此時(shí)的x的取值;

2)若函數(shù)上單調(diào)遞增,在上單調(diào)遞減,且,求的所有可能值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“辛卜生公式”給出了求幾何體體積的一種計(jì)算方法:夾在兩個(gè)平行平面之間的幾何體,如果被平行于這兩個(gè)平面的任何平面所截,截得的截面面積是截面高(不超過(guò)三次)的多項(xiàng)式函數(shù),那么這個(gè)幾何體的體積,就等于其上底面積、下底面積與四倍中截面面積的和乘以高的六分之一.即:,式中,,,依次為幾何體的高,下底面積,上底面積,中截面面積.如圖,現(xiàn)將曲線與直線軸圍成的封閉圖形繞軸旋轉(zhuǎn)一周得到一個(gè)幾何體.利用辛卜生公式可求得該幾何體的體積( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓上的一點(diǎn)到其左頂點(diǎn)的距離為.

(1)求橢圓的方程;

(2)若直線與橢圓交于兩點(diǎn)(與點(diǎn)不重合),若以為直徑的圓經(jīng)過(guò)點(diǎn),試證明:直線過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)命題中真命題是  

A. 同垂直于一直線的兩條直線互相平行

B. 底面各邊相等,側(cè)面都是矩形的四棱柱是正四棱柱

C. 過(guò)空間任一點(diǎn)與兩條異面直線都垂直的直線有且只有一條

D. 過(guò)球面上任意兩點(diǎn)的大圓有且只有一個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義函數(shù),數(shù)列滿足,.

1)若,求

2)若且數(shù)列為周期函數(shù),且最小正周期,求的值;

3)是否存在,使得成等比數(shù)列?若存在,求出所有這樣的,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】綠水青山就是金山銀山.近年來(lái),祖國(guó)各地依托本地自然資源,打造旅游產(chǎn)業(yè),旅游業(yè)正蓬勃發(fā)展.景區(qū)與游客都應(yīng)樹(shù)立尊重自然、順應(yīng)自然、保護(hù)自然的生態(tài)文明理念,合力使旅游市場(chǎng)走上規(guī)范有序且可持續(xù)的發(fā)展軌道.某景區(qū)有一個(gè)自愿消費(fèi)的項(xiàng)目:在參觀某特色景點(diǎn)入口處會(huì)為每位游客拍一張與景點(diǎn)的合影,參觀后,在景點(diǎn)出口處會(huì)將剛拍下的照片打印出來(lái),游客可自由選擇是否帶走照片,若帶走照片則需支付20元,沒(méi)有被帶走的照片會(huì)收集起來(lái)統(tǒng)一銷毀.該項(xiàng)目運(yùn)營(yíng)一段吋間后,統(tǒng)計(jì)出平均只有三成的游客會(huì)選擇帶走照片,為改善運(yùn)營(yíng)狀況,該項(xiàng)目組就照片收費(fèi)與游客消費(fèi)意愿關(guān)系作了市場(chǎng)調(diào)研,發(fā)現(xiàn)收費(fèi)與消費(fèi)意愿有較強(qiáng)的線性相關(guān)性,并統(tǒng)計(jì)出在原有的基礎(chǔ)上,價(jià)格每下調(diào)1元,游客選擇帶走照片的可能性平均增加0.05,假設(shè)平均每天約有5000人參觀該特色景點(diǎn),每張照片的綜合成本為5元,假設(shè)每個(gè)游客是否購(gòu)買照片相互獨(dú)立.

1)若調(diào)整為支付10元就可帶走照片,該項(xiàng)目每天的平均利潤(rùn)比調(diào)整前多還是少?

2)要使每天的平均利潤(rùn)達(dá)到最大值,應(yīng)如何定價(jià)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列A: ,… ().如果對(duì)小于()的每個(gè)正整數(shù)都有 ,則稱是數(shù)列A的一個(gè)“G時(shí)刻”.是數(shù)列A的所有“G時(shí)刻組成的集合.

(1)對(duì)數(shù)列A:-2,2,-1,1,3,寫(xiě)出的所有元素;

(2)證明:若數(shù)列A中存在使得>,則 ;

(3)證明:若數(shù)列A滿足- ≤1(n=2,3, …,N),的元素個(gè)數(shù)不小于 -.

查看答案和解析>>

同步練習(xí)冊(cè)答案