已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的一條漸近線過點(diǎn)(2,
3
)
,以右焦點(diǎn)F2為圓心作圓與兩條漸近線相切,圓面積恰為12π.
(1)求雙曲線的方程;
(2)任作一直線l與雙曲線右支交于兩點(diǎn)A,B,與漸近線交于兩點(diǎn)C,D,A在B,C兩點(diǎn)之間,求證:|AC|=|BD|.
分析:(1)先確定漸近線方程,再利用以右焦點(diǎn)F2為圓心作圓與兩條漸近線相切,即可求得雙曲線的方程;
(2)設(shè)直線為x=my+n代入雙曲線方程,漸近線方程,用韋達(dá)定理,可得AB、CD 的中點(diǎn)重合,即可得到結(jié)論.
解答:(1)解:∵雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的一條漸近線過點(diǎn)(2,
3
)
,∴
b
a
=
3
2
,
∴一條漸近線方程方程
3
x-2y=0

∵圓面積為12π,∴圓的半徑為2
3

∵以右焦點(diǎn)F2為圓心作圓與兩條漸近線相切
|
3
c|
7
=2
3
,∴c=2
7

∴a2=16,b2=12
∴雙曲線的方程為
x2
16
-
y2
12
=1
;
(2)證明:設(shè)直線為x=my+n代入雙曲線方程可得(3m2-4)y2+6mny+3n2-48=0
又雙曲線的漸近線方程為
x2
16
-
y2
12
=0
,直線方程代入可得(3m2-4)y2+6mny+3n2=0
∵直線l與雙曲線右支交于兩點(diǎn)A,B,與漸近線交于兩點(diǎn)C,D,A在B,C兩點(diǎn)之間,
∴AB、CD 的中點(diǎn)重合
∴|AC|=|BD|.
點(diǎn)評(píng):本題考查直線與圓的位置關(guān)系,考查雙曲線的方程,考查直線與雙曲線的位置關(guān)系,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
7
=1
,直線l過其左焦點(diǎn)F1,交雙曲線的左支于A、B兩點(diǎn),且|AB|=4,F(xiàn)2為雙曲線的右焦點(diǎn),△ABF2的周長為20,則此雙曲線的離心率e=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1
的一個(gè)焦點(diǎn)與拋物線y2=4x的焦點(diǎn)重合,且該雙曲線的離心率為
5
,則該雙曲線的漸近線方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(b>a>0)
,O為坐標(biāo)原點(diǎn),離心率e=2,點(diǎn)M(
5
,
3
)
在雙曲線上.
(1)求雙曲線的方程;
(2)若直線l與雙曲線交于P,Q兩點(diǎn),且
OP
OQ
=0
.問:
1
|OP|2
+
1
|OQ|2
是否為定值?若是請求出該定值,若不是請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知直線l:kx-y+1+2k=0(k∈R),則該直線過定點(diǎn)
(-2,1)
(-2,1)

(2)已知雙曲線
x2
a2
-
y2
b2
=1的一條漸近線方程為y=
4
3
x,則雙曲線的離心率為
5
3
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)滿足
a1
b
2
 |=0
,且雙曲線的右焦點(diǎn)與拋物線y2=4
3
x
的焦點(diǎn)重合,則該雙曲線的方程為
 

查看答案和解析>>

同步練習(xí)冊答案