(本小題滿分12分)已知點F是拋物線C:的焦點,S是拋物線C在第一象限內(nèi)的點,且|SF|=

(Ⅰ)求點S的坐標;
(Ⅱ)以S為圓心的動圓與軸分別交于兩點A、B,延長SA、SB分別交拋物線C于M、N兩點;
①判斷直線MN的斜率是否為定值,并說明理由;
②延長NM交軸于點E,若|EM|=|NE|,求cos∠MSN的值.

(Ⅰ)(1,1)(Ⅱ)①

解析試題分析:解:(1)設(shè)(>0),由已知得F,則|SF|=
=1,∴點S的坐標是(1,1)------------------------2分

(2)①設(shè)直線SA的方程為

,∴。
由已知SA=SB,∴直線SB的斜率為,∴,
--------------7分
②設(shè)E(t,0),∵|EM|=|NE|,∴,
 ,則--------------------------8分
∴直線SA的方程為,則,同理 
---------------------------12分
考點:拋物線的性質(zhì);直線的斜率公式;向量的坐標運算;余弦定理。
點評:本題第一小題用了拋物線的性質(zhì),這樣使問題簡化,當然,也可以由兩點距離公式來求。第二小題關(guān)鍵要從題意找出直線SA與SB的關(guān)系。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
雙曲線的中心為原點,焦點在軸上,兩條漸近線分別為,經(jīng)過右焦點垂直于的直線分別交兩點.已知成等差數(shù)列,且同向.
(Ⅰ)求雙曲線的離心率;
(Ⅱ)設(shè)被雙曲線所截得的線段的長為4,求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)如圖,已知直線OP1,OP2為雙曲線E:的漸近線,△P1OP2的面積為,在雙曲線E上存在點P為線段P1P2的一個三等分點,且雙曲線E的離心率為.

(1)若P1、P2點的橫坐標分別為x1、x,則x1、x2之間滿足怎樣的關(guān)系?并證明你的結(jié)論;
(2)求雙曲線E的方程;
(3)設(shè)雙曲線E上的動點,兩焦點,若為鈍角,求點橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓O和定點A(2,1),由圓O外一點向圓O引切線PQ,切點為Q,且滿足

(1) 求實數(shù)a、b間滿足的等量關(guān)系;
(2) 若以P為圓心所作的圓P與圓O有公共點,試求半徑取最小值時圓P的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的頂點在原點,它的準線過雙曲線的一個焦點,并與雙曲線的實軸垂直,已知拋物線與雙曲線的交點為.
(1)求拋物線的方程;
(2)求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的兩焦點是F1(0,-1),F(xiàn)2(0,1),離心率e=
(1)求橢圓方程;
(2)若P在橢圓上,且|PF1|-|PF2|=1,求cos∠F1PF2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)如圖所示,橢圓C 的離心率,左焦點為右焦點為,短軸兩個端點為.與軸不垂直的直線與橢圓C交于不同的兩點、,記直線、的斜率分別為,且

(1)求橢圓 的方程;
(2)求證直線 與軸相交于定點,并求出定點坐標.
(3)當弦 的中點落在內(nèi)(包括邊界)時,求直線的斜率的取值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(10分)過直角坐標平面中的拋物線,直線過焦點且與拋物線相交于,兩點.
⑴當直線的傾斜角為時,用表示的長度;
⑵當且三角形的面積為4時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率為,其中左焦點(-2,0).
(1) 求橢圓C的方程;
(2) 若直線y=x+m與橢圓C交于不同的兩點A,B,且線段AB的中點M在圓x2+y2=1上,求m的值.

查看答案和解析>>

同步練習冊答案