【題目】某市為了宣傳環(huán)保知識(shí),舉辦了一次“環(huán)保知識(shí)知多少”的問(wèn)卷調(diào)查活動(dòng)(一
人答一份).現(xiàn)從回收的年齡在20~60歲的問(wèn)卷中隨機(jī)抽取了100份,統(tǒng)計(jì)結(jié)果如下面的圖表所示.
年齡 分組 | 抽取份數(shù) | 答對(duì)全卷 的人數(shù) | 答對(duì)全卷的人數(shù) 占本組的概率 |
[20,30) | 40 | 28 | 0.7 |
[30,40) | 27 | 0.9 | |
[40,50) | 10 | 4 | |
[50,60] | 20 | 0.1 |
(1)分別求出, , , 的值;
(2)從年齡在答對(duì)全卷的人中隨機(jī)抽取2人授予“環(huán)保之星”,求年齡在的人中至少有1人被授予“環(huán)保之星”的概率.
【答案】(1), , , ;(2).
【解析】試題分析:(1)由抽取總問(wèn)卷為100份可得的值,由抽取份數(shù)為10份,答對(duì)全卷人數(shù)為4人可得的值,由抽取份數(shù)為20份,答對(duì)全卷的人數(shù)占本組的概率為可得的值,由頻率分布直方圖中,各頻率之和等于1可得的值;(2)利用列舉法寫(xiě)出抽取2人授予“環(huán)保之星”的所有基本事件,并從中找出年齡在的人中至少有1人被授予“環(huán)保之星”的基本事件,利用古典概型公式求出概率.
試題解析:(1)因?yàn)槌槿】倖?wèn)卷為100份,所以. 1分
年齡在中,抽取份數(shù)為10份,答對(duì)全卷人數(shù)為4人,所以. 2分
年齡在中,抽取份數(shù)為20份,答對(duì)全卷的人數(shù)占本組的概率為,
所以,解得. 3分
根據(jù)頻率直方分布圖,得,
解得. 4分
(2)因?yàn)槟挲g在與中答對(duì)全卷的人數(shù)分別為4人與2人.
年齡在中答對(duì)全卷的4人記為, , , ,年齡在中答對(duì)全卷的2人記為, ,則從這6人中隨機(jī)抽取2人授予“環(huán)保之星”獎(jiǎng)的所有可能的情況是: , , , , , , , , , , , , , , 共15種. 8分
其中所抽取年齡在的人中至少有1人被授予“環(huán)保之星”的情況是: , , , , , , , , 共9種. 11分
故所求的概率為. 12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)在處的切線(xiàn)與直線(xiàn)平行,則實(shí)數(shù)____;
當(dāng)a≤0時(shí),若方程有且只有一個(gè)實(shí)根,則實(shí)數(shù)的取值范圍為_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解甲、乙兩廠(chǎng)產(chǎn)品的質(zhì)量,從兩廠(chǎng)生產(chǎn)的產(chǎn)品中分別隨機(jī)抽取各10件樣品,測(cè)量產(chǎn)品中某種元素的含量(單位:毫克),如圖是測(cè)量數(shù)據(jù)的莖葉圖:
規(guī)定:當(dāng)產(chǎn)品中的此種元素含量不小于16毫克時(shí),該產(chǎn)品為優(yōu)等品.
(1)從乙廠(chǎng)抽出的上述10件樣品中,隨機(jī)抽取3件,求抽到的3件樣品中優(yōu)等品數(shù)的分布列及其數(shù)學(xué)期望;
(2)從甲廠(chǎng)的10件樣品中有放回地逐個(gè)隨機(jī)抽取3件,也從乙廠(chǎng)的10件樣品中有放回地逐個(gè)隨機(jī)抽取3件,求抽到的優(yōu)等品數(shù)甲廠(chǎng)恰比乙廠(chǎng)多2件的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知曲線(xiàn)的方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為().
(1)求曲線(xiàn)的普通方程和曲線(xiàn)的直角坐標(biāo)方程;
(2)曲線(xiàn)上有3個(gè)點(diǎn)到曲線(xiàn)的距離等于1,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】4月23日是世界讀書(shū)日,惠州市某中學(xué)在此期間開(kāi)展了一系列的讀書(shū)教育活動(dòng)。為了解本校學(xué)生課外閱讀情況,學(xué)校隨機(jī)抽取了100名學(xué)生對(duì)其課外閱讀時(shí)間進(jìn)行調(diào)查。下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均課外閱讀時(shí)間(單位:分鐘)的頻率分布直方圖,且將日均課外閱讀時(shí)間不低于60分鐘的學(xué)生稱(chēng)為“讀書(shū)迷”,低于60分鐘的學(xué)生稱(chēng)為“非讀書(shū)迷”.
(Ⅰ)根據(jù)已知條件完成下面2×2列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為“讀書(shū)迷”與性別有關(guān)?
(Ⅱ)將頻率視為概率,現(xiàn)在從該校大量學(xué)生中用隨機(jī)抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中“讀書(shū)迷”的人數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列、數(shù)學(xué)期望和方差.
附:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).
(1)求的值;
(2)判斷函數(shù)的單調(diào)性并證明;
(3)若對(duì)任意的,不等式恒成立,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“累積凈化量”是空氣凈化器質(zhì)量的一個(gè)重要衡量指標(biāo),它是指空氣凈化從開(kāi)始使用到凈化效率為50%時(shí)對(duì)顆粒物的累積凈化量,以克表示,根據(jù)《空氣凈化器》國(guó)家標(biāo)準(zhǔn),對(duì)空氣凈化器的累計(jì)凈化量有如下等級(jí)劃分:
累積凈化量(克) | 12以上 | |||
等級(jí) |
為了了解一批空氣凈化器(共5000臺(tái))的質(zhì)量,隨機(jī)抽取臺(tái)機(jī)器作為樣本進(jìn)行估計(jì),已知這臺(tái)機(jī)器的累積凈化量都分布在區(qū)間中,按照、、、、均勻分組,其中累積凈化量在的所有數(shù)據(jù)有:4.5,4.6,5.2,5.3,5.7和5.9,并繪制了頻率分布直方圖,如圖所示:
(1)求的值及頻率分布直方圖中的值;
(2)以樣本估計(jì)總體,試估計(jì)這批空氣凈化器(共5000臺(tái))中等級(jí)為的空氣凈化器有多少臺(tái)?
(3)從累積凈化量在的樣本中隨機(jī)抽取2臺(tái),求恰好有1臺(tái)等級(jí)為的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為調(diào)查某地區(qū)老人是否需要志愿者提供幫助,用簡(jiǎn)單隨機(jī)抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:
(Ⅰ)估計(jì)該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;
(Ⅱ)能否有的把握認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?
(Ⅲ)根據(jù)(Ⅱ)的結(jié)論,能否提供更好的調(diào)查方法來(lái)估計(jì)該地區(qū)的老年人中,需要志愿者提供幫助的老年人的比例?說(shuō)明理由.
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知城和城相距,現(xiàn)計(jì)劃以為直徑的半圓上選擇一點(diǎn)(不與點(diǎn), 重合)建造垃圾處理廠(chǎng).垃圾處理廠(chǎng)對(duì)城市的影響度與所選地點(diǎn)到城市的距離有關(guān),對(duì)城和城的總影響度為對(duì)城與城的影響度之和.記點(diǎn)到城的距離為,建在處的垃圾處理廠(chǎng)對(duì)城和城的總影響度為.統(tǒng)計(jì)調(diào)查表明:垃圾處理廠(chǎng)對(duì)城的影響度與所選地點(diǎn)到城的距離的平方成反比例關(guān)系,比例系數(shù)為4;對(duì)城的影響度與所選地點(diǎn)到城的距離的平方成反比例關(guān)系,比例系數(shù)為.當(dāng)垃圾處理廠(chǎng)建在的中點(diǎn)時(shí),對(duì)城和城的總影響度為0.065.
(1)將表示成的函數(shù).
(2)討論(1)中函數(shù)的單調(diào)性,并判斷在上是否存在一點(diǎn),使建在此處的垃圾處理廠(chǎng)對(duì)城和城的總影響度最。咳舸嬖,求出該點(diǎn)到城的距離;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com