【題目】網(wǎng)上購物系統(tǒng)是一種具有交互功能的商業(yè)信息系統(tǒng),它在網(wǎng)絡(luò)上建立一個虛擬的購物商場,使購物過程變得輕松、快捷、方便.網(wǎng)上購物系統(tǒng)分為前臺管理和后臺管理,前臺管理包括瀏覽商品、查詢商品、訂購商品、用戶注冊等功能;后臺管理包括公告管理、商品管理、訂單管理、投訴管理和用戶管理等模塊.根據(jù)這些要求畫出該系統(tǒng)的結(jié)構(gòu)圖.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是上的偶函數(shù).
(1)求實數(shù)的值;
(2)判斷并證明函數(shù)在上單調(diào)性;
(3)求函數(shù)在上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】張師傅想要一個如圖1所示的鋼筋支架的組合體,來到一家鋼制品加工店定制,拿出自己畫的組合體三視圖(如圖2所示).店老板看了三視圖,報了最低價,張師傅覺得很便宜,當(dāng)即甩下定金和三視圖,約定第二天提貨.第二天提貨時,店老板一臉壞笑的捧出如圖3–1所示的組合體,張師傅一看,臉都綠了:“奸商,怎能如此偷工減料”.店老板說,我是按你的三視圖做的,要不我給你加一個正方體,但要加價,隨機加上了一個正方體,得到如圖3–2所示的組合體;張師傅臉還是綠的,店老板又加上一個正方體,組成了如圖 3–3 所示的組合體,又加價;張師傅臉繼續(xù)綠,店老板再加一個正方體,組成如圖 3–4 所示的組合體,再次加價;雙方就三視圖爭吵不休……
你認為店老板提供的個組合體的三視圖與張師傅畫的三視圖一致的個數(shù)是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)通過調(diào)查問卷(滿分50分)的形式對本企業(yè)900名員工的工作滿意度進行調(diào)查,并隨機抽取了其中30名員工(16名女員工,14名男員工)的得分,如下表:
女 | 47 | 36 | 32 | 48 | 34 | 44 | 43 | 47 | 46 | 41 | 43 | 42 | 50 | 43 | 35 | 49 |
男 | 37 | 35 | 34 | 43 | 46 | 36 | 38 | 40 | 39 | 32 | 48 | 33 | 40 | 34 |
(1)根據(jù)以上數(shù)據(jù),估計該企業(yè)得分大于45分的員工人數(shù);
(2)現(xiàn)用計算器求得這30名員工的平均得分為40.5分,若規(guī)定大于平均得分為“滿意”,否則為“不滿意”,請完成下列表格:
“滿意”的人數(shù) | “不滿意”的人數(shù) | 總計 | |
女 | 16 | ||
男 | 14 | ||
總計 | 30 |
(3)根據(jù)上述表中數(shù)據(jù),利用獨立性檢驗的方法判斷,能否有99%的把握認為該企業(yè)員工“性別”與“工作是否滿意”有關(guān)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)用“五點法”畫函數(shù)f(x)=Asin(ωx+φ)在某一個周期內(nèi)的圖象時,列表并填入的數(shù)據(jù)如下表:
x | x1 | x2 | x3 | ||
ωx+φ | 0 | π | 2π | ||
Asin(ωx+φ) | 0 | 2 | 0 | -2 | 0 |
(1)求x1,x2,x3的值及函數(shù)f(x)的表達式;
(2)將函數(shù)f(x)的圖象向左平移π個單位,可得到函數(shù)g(x)的圖象,求函數(shù)y=f(x)·g(x)在區(qū)間的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人玩擲骰子游戲,甲擲出的點數(shù)記為,乙擲出的點數(shù)記為,
若關(guān)于的一元二次方程有兩個不相等的實數(shù)根時甲勝;方程有
兩個相等的實數(shù)根時為“和”;方程沒有實數(shù)根時乙勝.
(1)列出甲、乙兩人“和”的各種情形;
(2)求甲勝的概率.
必要時可使用此表格
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(Ⅰ)若函數(shù)在上遞減, 求實數(shù)的取值范圍;
(Ⅱ)當(dāng)時,求的最小值的最大值;
(Ⅲ)設(shè),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四邊形ABEF和ABCD都是直角梯形,∠BAD=∠FAB=
90°,BC AD,BE FA,G,H分別為FA,F(xiàn)D的中點.
(1)證明:四邊形BCHG是平行四邊形.
(2)C,D,F,E四點是否共面?為什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2016~2017·鄭州高一檢測)過點M(1,2)的直線l與圓C:(x-3)2+(y-4)2=25交于A,B兩點,C為圓心,當(dāng)∠ACB最小時,直線l的方程是 ( )
A. x-2y+3=0 B. 2x+y-4=0
C. x-y+1=0 D. x+y-3=0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com