(2012•福建模擬)平面內(nèi)動(dòng)點(diǎn)P到點(diǎn)F(1,0)的距離等于它到直線x=-1的距離,記點(diǎn)P的軌跡為曲線Γ.
(Ⅰ)求曲線Γ的方程;
(Ⅱ)若點(diǎn)A,B,C是Γ上的不同三點(diǎn),且滿足
FA
+
FB
+
FC
=0
.證明:△ABC不可能為直角三角形.
分析:(Ⅰ)由條件可知,點(diǎn)P到點(diǎn)F(1,0)的距離與到直線x=-1的距離相等,從而可求曲線Γ的方程;
(Ⅱ)解法一:利用反證法,假設(shè)△ABC是直角三角形,不失一般性,設(shè)∠A=90°,利用
AB
AC
=0
,及
FA
+
FB
+
FC
=
0
,可建立方程,利用方程的判別式,即可得出結(jié)論;
解法二:設(shè)A(x1,y1),B(x2,y2),C(x3,y3),由
FA
+
FB
+
FC
=
0
,得x1+x2+x3=3,y1+y2+y3=0,由條件的對(duì)稱性,欲證△ABC不是直角三角形,只需證明∠A≠90°,分類討論,斜率存在時(shí),設(shè)直線AB的方程為:x=ty+m(t≠0),代入y2=4x,再假設(shè)∠A=90°,建立方程,利用方程的判別式,即可得出結(jié)論.
解答:(Ⅰ)解:由條件可知,點(diǎn)P到點(diǎn)F(1,0)的距離與到直線x=-1的距離相等,
所以點(diǎn)P的軌跡是以F(1,0)為焦點(diǎn),x=-1為準(zhǔn)線的拋物線,其方程為y2=4x.…(4分)
(Ⅱ)解法一:假設(shè)△ABC是直角三角形,不失一般性,設(shè)∠A=90°,A(x1,y1),B(x2,y2),C(x3,y3),
則由
AB
AC
=0
,
AB
=(x2-x1y2-y1)
,
AC
=(x3-x1,y3-y1)
,
可得(x2-x1)(x3-x1)+(y2-y1)(y3-y1)=0.…(6分)
因?yàn)?span id="kkjssc0" class="MathJye">xi=
yi2
4
(i=1,2,3),y1≠y2,y1≠y3,
所以(y1+y2)(y1+y3)+16=0.…(8分)
又因?yàn)?span id="jdmsmqi" class="MathJye">
FA
+
FB
+
FC
=
0
,所以x1+x2+x3=3,y1+y2+y3=0,
所以y2y3=-16.   ①
y12+y22+y32=4(x1+x2+x3)=12,
所以(-y2-y3)2+y22+y32=12,即y22+y32+y2y3=6.  ②…(10分)
由①,②得y22+(-
16
y2
)2-16=6
,所以y24-22y22+256=0. ③
因?yàn)椤?(-22)2-4×256=-540<0.
所以方程③無解,從而△ABC不可能是直角三角形.…(12分)
解法二:設(shè)A(x1,y1),B(x2,y2),C(x3,y3),由
FA
+
FB
+
FC
=
0
,
得x1+x2+x3=3,y1+y2+y3=0.…(6分)
由條件的對(duì)稱性,欲證△ABC不是直角三角形,只需證明∠A≠90°.
(1)當(dāng)AB⊥x軸時(shí),x1=x2,y1=-y2,從而x3=3-2x1,y3=0,即點(diǎn)C的坐標(biāo)為(3-2x1,0).
由于點(diǎn)C在y2=4x上,所以3-2x1=0,即x1=
3
2
,
此時(shí)A(
3
2
,
6
)
B(
3
2
,-
6
)
,C(0,0),則∠A≠90°.…(8分)
(2)當(dāng)AB與x軸不垂直時(shí),設(shè)直線AB的方程為:x=ty+m(t≠0),代入y2=4x,
整理得:y2-4ty-4m=0,則y1+y2=4t.
若∠A=90°,則直線AC的斜率為-t,同理可得:y1+y3=-
4
t

由y1+y2+y3=0,得y1=4t-
4
t
y2=
4
t
,y3=-4t.
由x1+x2+x3=3,可得y12+y22+y32=4(x1+x2+x3)=12
從而(4t-
4
t
)2+
(
4
t
)2
+(-4t)2=12,
整理得:t2+
1
t2
=
11
8
,即8t4-11t2+8=0,①
△=(-11)2-4×8×8=-135<0,所以方程①無解,從而∠A≠90°.…(11分)
綜合(1),(2),△ABC不可能是直角三角形.…(12分)
點(diǎn)評(píng):本題考查拋物線的標(biāo)準(zhǔn)方程、直線與圓錐曲線的位置關(guān)系等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、分類與整合思想、數(shù)形結(jié)合思想等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•福建模擬)甲、乙兩位運(yùn)動(dòng)員在5場(chǎng)比賽的得分情況如莖葉圖所示,記甲、乙兩人的平均得分分別為
.
x
,
.
x
,則下列判斷正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•福建模擬)某幾何體的三視圖如圖所示,且該幾何體的體積是
3
2
,則正視圖中的x的值是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•福建模擬)已知平面向量
a
=(3,1)
,
b
=(x
,-3),且
a
b
,則x=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•福建模擬)若a=20.3,b=0.32,c=log0.32,則a,b.c的大小順序是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•福建模擬)已知函數(shù)f(x)=
log2x , x>0
3x+1 , x≤0
f(f(
1
4
))
的值是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案