【題目】已知函數(shù)則使得成立的x的取值范圍是(

A.-1,3B.

C.D.

【答案】D

【解析】

先求出2x,再由fx)為偶函數(shù),且在(0,+∞)上單調(diào)遞增,故f2x)>fx+3)等價于|2x||x+3|,解之即可求出使得f2x)>fx+3)成立的x的取值范圍.

解:∵函數(shù)fx)=lnex+ex+x2,

2x

當(dāng)x0時,f′(x)=0,fx)取最小值,

當(dāng)x0時,f′(x)>0fx)單調(diào)遞增,

當(dāng)x0時,f′(x)<0,fx)單調(diào)遞減,

fx)=lnex+ex+x2是偶函數(shù),且在(0,+∞)上單調(diào)遞增,

f2x)>fx+3)等價于|2x||x+3|

整理,得x22x30

解得x3x<﹣1,

∴使得f2x)>fx+3)成立的x的取值范圍是(﹣∞,﹣1)∪(3,+∞).

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”.利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值3.14,這就是著名的“徽率”.小華同學(xué)利用劉徽的“割圓術(shù)”思想在半徑為1的圓內(nèi)作正邊形求其面積,如圖是其設(shè)計的一個程序框圖,則框圖中應(yīng)填入、輸出的值分別為( )

(參考數(shù)據(jù):

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】汽車急剎車的停車距離與諸多因素有關(guān),其中最為關(guān)鍵的兩個因素是駕駛員的反應(yīng)時間和汽車行駛的速度.設(shè)d表示停車距離,表示反應(yīng)距離,表示制動距離,.下圖是根據(jù)美國公路局公布的試驗數(shù)據(jù)制作的停車距離示意圖,對應(yīng)的汽車行駛的速度與停車距離的表格如下圖所示

序號

1)根據(jù)表格中的數(shù)據(jù),建立停車距離與汽車速度的函數(shù)模型.可選擇模型一:或模型二:(其中v為汽車速度,a,b為待定系數(shù))進(jìn)行擬合,請根據(jù)序號2和序號7兩組數(shù)據(jù)分別求出兩個函數(shù)模型的解析式;

2)通過計算時的停車距離,分析選擇哪一個函數(shù)模型的擬合效果更好.

(參考數(shù)據(jù):;;.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓C: (a>b>0)的左、右焦點分別為F1、F2,若橢圓C經(jīng)過點(0,),離心率為,直線l過點F2與橢圓C交于A、B兩點.

(1)求橢圓C的方程;

(2)若點NF1AF2的內(nèi)心(三角形三條內(nèi)角平分線的交點),求F1NF2F1AF2面積的比值;

(3)設(shè)點A,F(xiàn)2,B在直線x=4上的射影依次為點D,G, E.連結(jié)AE,BD,試問當(dāng)直線l的傾斜角變化時,直線AEBD是否相交于定點T?若是,請求出定點T的坐標(biāo);若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市2011年至2017年新開樓盤的平均銷售價格(單位:千元/平方米)的統(tǒng)計數(shù)據(jù)如下表:

年份

2011

2012

2013

2014

2015

2016

2017

年份代號

1

2

3

4

5

6

7

銷售價格

3

3.4

3.7

4.5

4.9

5.3

6

(1)求關(guān)于x的線性回歸方程;

(2)利用(1)中的回歸方程,分析2011年至2017年該市新開樓盤平均銷售價格的變化情況,并預(yù)測該市2019年新開樓盤的平均銷售價格。

附:參考公式: ,,其中為樣本平均值。

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以為極點,軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為;直線的參數(shù)方程為為參數(shù)),直線與曲線分別交于,兩點.

(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;

(2)若點的極坐標(biāo)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10分)一位網(wǎng)民在網(wǎng)上光顧某淘寶小店,經(jīng)過一番瀏覽后,對該店鋪中的五種商品有購買意向.已知該網(wǎng)民購買兩種商品的概率均為,購買兩種商品的概率均為,購買種商品的概率為.假設(shè)該網(wǎng)民是否購買這五種商品相互獨立.

1)求該網(wǎng)民至少購買4種商品的概率;

2)用隨機變量表示該網(wǎng)民購買商品的種數(shù),求的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),若存在區(qū)間,使得上的值域為,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】偶函數(shù)定義域為,其導(dǎo)函數(shù)是,當(dāng)時,有,則關(guān)于的不等式的解集為( )

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊答案