已知sina,cosa是關于x的方程8x2+6mx+2m+1=0的兩根,求
1
sina
+
1
cosa
的值.
考點:根與系數(shù)的關系
專題:計算題,三角函數(shù)的求值
分析:根據(jù)根與系數(shù)的關系,可得sina+cosa=-
3m
4
,sina•cosa=
2m+1
8
,根據(jù)完全平方公式,求出m,再求
1
sina
+
1
cosa
的值.
解答: 解;由根與系數(shù)的關系,得sina+cosa=-
3m
4
,sina•cosa=
2m+1
8
,
9m2
16
=1+2×
2m+1
8
,
∴m=2或-
10
9

∵△≥0,
∴m=-
10
9

1
sina
+
1
cosa
=
sina+cosa
sina•cosa
=-
6m
2m+1
=-
60
11
點評:本題考查了根與系數(shù)的關系,考查三角函數(shù)知識,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=
1
x
,則
e
1
f(x)dx=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若實數(shù)x,y滿足
x-y+2≥0
x+y≥0
x≤1
,則z=3x+y的最小值是( 。
A、-4B、-2C、2D、6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=x+4(1-x) 
1
2
的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b為非零實數(shù),且a<b,則下列命題成立的是( 。
A、a2<b2
B、a2b<a3
C、
b
a
a
b
D、
a
a-b
b
a-b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0,x,y滿足約束條件
x≥1
x+y≤3
y≥a(x-3)
,若z=2x+y的最小值為1,則a=( 。
A、
1
2
B、
1
3
C、1
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從1,2,3,4,5五個數(shù)字中,選出一個偶數(shù)和兩個奇數(shù),組成一個沒有重復數(shù)字的三位數(shù),這樣的三位數(shù)共有
 
個.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC是斜三角形,內(nèi)角A、B、C所對的邊的長分別為a、b、c.己知csinA=
3
ccosC.
(Ⅰ)求角C;
(Ⅱ)若c=
21
,且sinC+sin(B-A)=5sin2A,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:
(1)已知(a+a-12=3,求a3+a-3;
(2)已知a2x=
2
+1
,求
a3x+a-3x
ax+a-x
;
(3)已知x-3+1=a,求a2-2ax-3+x-6

查看答案和解析>>

同步練習冊答案