【題目】對于項(xiàng)數(shù)為)的有窮正整數(shù)數(shù)列,記),即中的最大值,稱數(shù)列為數(shù)列的“創(chuàng)新數(shù)列”.比如的“創(chuàng)新數(shù)列”為.

1)若數(shù)列的“創(chuàng)新數(shù)列”為1,2,3,4,4,寫出所有可能的數(shù)列;

2)設(shè)數(shù)列為數(shù)列的“創(chuàng)新數(shù)列”,滿足),求證: );

3)設(shè)數(shù)列為數(shù)列的“創(chuàng)新數(shù)列”,數(shù)列中的項(xiàng)互不相等且所有項(xiàng)的和等于所有項(xiàng)的積,求出所有的數(shù)列.

【答案】(1)見解析;(2)見解析;(3)

【解析】試題分析:1創(chuàng)新數(shù)列為1,2,3,4,4的所有數(shù)列,可知其首項(xiàng)是1,第二項(xiàng)是2,第三項(xiàng)是3,第四項(xiàng)是4,第五項(xiàng)是1234,可寫出;(2由題意易得, 從而可得,整理即證得結(jié)論;(3驗(yàn)證當(dāng)時(shí),不滿足題意,當(dāng)時(shí),根據(jù),同理, ,而當(dāng)時(shí)不滿足題意.

試題解析:1)所有可能的數(shù)列 ; ;

2)由題意知數(shù)列. ,所以 所以,即

3)當(dāng)時(shí),由,又所以,不滿足題意;當(dāng)時(shí),由題意知數(shù)列,又

當(dāng)時(shí)此時(shí) ,所以等式成立

當(dāng)時(shí)此時(shí), ,所以等式成立;

當(dāng), ,此時(shí)數(shù)列.

當(dāng)時(shí), ,而,所以不存在滿足題意的數(shù)列.綜上數(shù)列依次為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】濟(jì)南新舊動能轉(zhuǎn)換先行區(qū),承載著濟(jì)南從“大明湖時(shí)代”邁向“黃河時(shí)代”的夢想,肩負(fù)著山東省新舊動能轉(zhuǎn)換先行先試的重任,是全國新舊動能轉(zhuǎn)換的先行區(qū).先行區(qū)將以“結(jié)構(gòu)優(yōu)化質(zhì)量提升”為目標(biāo),通過開放平臺匯聚創(chuàng)新要素,堅(jiān)持綠色循環(huán)保障持續(xù)發(fā)展,建設(shè)現(xiàn)代綠色智慧新城.2019年某智能機(jī)器人制造企業(yè)有意落戶先行區(qū),對市場進(jìn)行了可行性分析,如果全年固定成本共需2000(萬元),每年生產(chǎn)機(jī)器人(百個(gè)),需另投人成本(萬元),且,由市場調(diào)研知,每個(gè)機(jī)器人售價(jià)6萬元,且全年生產(chǎn)的機(jī)器人當(dāng)年能全部銷售完.

(1)求年利潤(萬元)關(guān)于年產(chǎn)量(百個(gè))的函數(shù)關(guān)系式;(利潤=銷售額-成本)

(2)該企業(yè)決定:當(dāng)企業(yè)年最大利潤超過2000(萬元)時(shí),才選擇落戶新舊動能轉(zhuǎn)換先行區(qū).請問該企業(yè)能否落戶先行區(qū),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面六個(gè)句子中,錯(cuò)誤的題號是________.

①周期函數(shù)必有最小正周期;

②若,至少有一個(gè)為;

為第三象限角,則;

④若向量的夾角為銳角,則

⑤存在,,使成立;

⑥在中,O內(nèi)一點(diǎn),且,則O的重心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列 滿足: 的前項(xiàng)和為,并規(guī)定.定義集合 ,

(Ⅰ)對數(shù)列 , , , , ,求集合;

(Ⅱ)若集合, ,證明: ;

(Ⅲ)給定正整數(shù)對所有滿足的數(shù)列,求集合的元素個(gè)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知無窮數(shù)列的前n項(xiàng)和為,記, ,…, 中奇數(shù)的個(gè)數(shù)為

(Ⅰ)若= n,請寫出數(shù)列的前5項(xiàng);

(Ⅱ)求證:"為奇數(shù), (i = 2,3,4,...)為偶數(shù)”是“數(shù)列是單調(diào)遞增數(shù)列”的充分不必要條件;

(Ⅲ)若,i=1, 2, 3,…,求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓的方程為,圓的方程為,動圓與圓內(nèi)切且與圓外切.

(1)求動圓圓心的軌跡的方程;

(2)已知為平面內(nèi)的兩個(gè)定點(diǎn),過點(diǎn)的直線與軌跡交于,兩點(diǎn),求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯(cuò)誤的是  

A. 棱柱的側(cè)面都是平行四邊形

B. 所有面都是三角形的多面體一定是三棱錐

C. 用一個(gè)平面去截正方體,截面圖形可能是五邊形

D. 將直角三角形繞其直角邊所在直線旋轉(zhuǎn)一周所得的幾何體是圓錐

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】進(jìn)入12月以來,某地區(qū)為了防止出現(xiàn)重污染天氣,堅(jiān)持保民生、保藍(lán)天,嚴(yán)格落實(shí)機(jī)動車限行等一系列“管控令”.該地區(qū)交通管理部門為了了解市民對“單雙號限行”的贊同情況,隨機(jī)采訪了220名市民,將他們的意見和是否擁有私家車情況進(jìn)行了統(tǒng)計(jì),得到如下的列聯(lián)表:

贊同限行

不贊同限行

合計(jì)

沒有私家車

90

20

110

有私家車

70

40

110

合計(jì)

160

60

220

(1)根據(jù)上面的列聯(lián)表判斷,能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為“是否贊同限行與是否擁有私家車”有關(guān);

(2)為了了解限行之后是否對交通擁堵、環(huán)境污染起到改善作用,從上述調(diào)查的不贊同限行的人員中按分層抽樣抽取6人,再從這6人中隨機(jī)抽出3名進(jìn)行電話回訪,求3人中至少抽到1名“沒有私家車”人員的概率.

附:.

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)過市場調(diào)查,超市中的某種小商品在過去的近40天的日銷售量(單位:件)與價(jià)格(單位:元)為時(shí)間(單位:天)的函數(shù),且日銷售量近似滿足,價(jià)格近似滿足。

(1)寫出該商品的日銷售額(單位:元)與時(shí)間)的函數(shù)解析式并用分段函數(shù)形式表示該解析式(日銷售額=銷售量商品價(jià)格);

(2)求該種商品的日銷售額的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案