2011年3月20日,第19個世界水日,主題是:“城市水資源管理”;2011年“六·五”世界環(huán)境日中國主題:“共建生態(tài)文明,共享綠色未來”.活動組織者為調(diào)查市民對活動主題的了解情況,隨機對10~60歲的人群抽查了人,調(diào)查的每個人都同時回答了兩個問題,統(tǒng)計結(jié)果如下:

(Ⅰ)若以表中的頻率近似看作各年齡段回答活動主題正確的概率,規(guī)定回答正確世界環(huán)境日中國主題的得20元獎勵,回答正確世界水日主題的得30元獎勵.組織者隨機請一個家庭中的兩名成員(大人42歲,孩子16歲)回答這兩個主題,兩個主題能否回答正確均無影響,分別寫出這個家庭兩個成員獲得獎勵的分布列并求該家庭獲得獎勵的期望;
(Ⅱ)求該家庭獲得獎勵為50元的概率.
17.解:(1)依題,設孩子獲得獎勵為,大人獲得獎勵為,則,為隨機變量,其分布列分別為:


該家庭獲得獎勵的期望                                                        8分
(2)0.25                                12分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

某校從參加高三年級第一學期期末考試的學生中抽出50名學生,并統(tǒng)計了他們的數(shù)學成績(成績均為整數(shù),滿分為100分),將數(shù)學成績進行分組并根據(jù)各組人數(shù)制成如下頻率分布表:
(Ⅰ)將上面的頻率分布表補充完整,并估計本次考試全校85分以上學生的比例;
(Ⅱ)為了幫助成績差的同學提高數(shù)學成績,學校決定成立“二幫一”小組,即從成績?yōu)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215643288492.png" style="vertical-align:middle;" />中任選出兩位同學,共同幫助成績在中的某一個同學,試列出所有基本事件;若同學成績?yōu)?3分,同學成績?yōu)?5分,求兩同學恰好被安排在“二幫一”中同一小組的概率.
分 組
頻 數(shù)
頻 率
[40, 50 )
2
0.04
[ 50, 60 )
3
0.06
[ 60, 70 )
14
0.28
[ 70, 80 )
15
0.30
[ 80, 90 )
 
 
[ 90, 100 ]
4
0.08
合 計
 
 
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

為了拓展網(wǎng)絡市場,騰訊公司為用戶推出了多款應用,如“農(nóng)場”、“音樂”、“讀書”等.某校研究性學習小組準備舉行一次“使用情況”調(diào)查,從高二年級的一、二、三、四班中抽取10名學生代表參加,抽取不同班級的學生人數(shù)如下表所示:
班級
一班
二班
三班
四班
人數(shù)
2人
3人
4人
1人
(I)從這10名學生中隨機選出2名,求這2人來自相同班級的概率;
(Ⅱ) 假設在某時段,三名學生代表甲、乙、丙準備分別從農(nóng)場、音樂、讀書中任意選擇一項,他們選擇農(nóng)場的概率都為;選擇音樂的概率都為;選擇讀書的概率都為;他們的選擇相互獨立.設在該時段這三名學生中選擇讀書的總?cè)藬?shù)為隨機變量,求隨機變量的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
有甲、乙兩種相互獨立的預防措施可以降低某地區(qū)某災情的發(fā)生.單獨采用甲、乙預防措施后,災情發(fā)生的概率分別為0.08和0.10,且各需要費用60萬元和50萬元.在不采取任何預防措施的情況下發(fā)生災情的概率為0.3.如果災情發(fā)生,將會造成800萬元的損失.(設總費用=采取預防措施的費用+可能發(fā)生災情損失費用)
(I)若預防方案允許甲、乙兩種預防措施單獨采用,他們各自總費用是多少?
(II)若預防方案允許甲、乙兩種預防措施單獨采用、聯(lián)合采用或不采用,請確定預防方案使總費用最少的那個方案.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


(14分)(理)袋中裝有黑球和白球共7個,從中任取2個球都是白球的概率為現(xiàn)有甲、乙兩人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到兩人中有一人取到白球時既終止,每個球在每一次被取出的機會是等可能的,用表示取球終止所需要的取球次數(shù).
(I)求袋中所有的白球的個數(shù);
(II)求隨機變量的概率分布;
(III)求甲取到白球的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題


本小題滿分12分)
紅隊隊員甲、乙、丙與藍隊隊員A、B、C進行圍棋比賽,甲對A,乙對B,丙對C各一盤,已知甲勝A,乙勝B,丙勝C的概率分別為0.6,0.5,0.5,假設各盤比賽結(jié)果相互獨立。
(Ⅰ)求紅隊至少兩名隊員獲勝的概率;
(Ⅱ)用表示紅隊隊員獲勝的總盤數(shù),求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

右圖是2010年在惠州市舉行的全省運動會上,七位評委為某跳水比賽項目打出的分數(shù)的莖葉統(tǒng)計圖,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均數(shù)和方差分別為(   )
A.84,4.84B.84,1.6 C.85,1.6D.85,4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設隨機變量,且,則實數(shù)的值為 (   )
A.4 B.6  C.8  D.10

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題共12分)某中學的高二(1)班男同學有名,女同學有名,老師按照分層抽樣的方法組建了一個人的課外興趣小組.
(Ⅰ)求某同學被抽到的概率及課外興趣小組中男、女同學的人數(shù);
(Ⅱ)經(jīng)過一個月的學習、討論,這個興趣小組決定選出兩名同學做某項實驗,方法是先從小組里選出名同學做實驗,該同學做完后,再從小組內(nèi)剩下的同學中選一名同學做實驗,求選出的兩名同學中恰有一名女同學的概率;

查看答案和解析>>

同步練習冊答案