若存在區(qū)間M=[a,b](ab),使得{y|yf(x),xM}=M,則稱區(qū)間M為函數(shù)f(x)的一個(gè)“穩(wěn)定區(qū)間”.給出下列四個(gè)函數(shù):①y=exx∈R;②f(x)=x3;③f(x)=cos;④f(x)=ln x+1.其中存在穩(wěn)定區(qū)間的函數(shù)有________(寫出所有正確命題的序號(hào)).
②③
根據(jù)新定義逐一判斷.因?yàn)楹瘮?shù)y=exx∈R遞增,且exxx∈R恒成立,函數(shù)y=exx∈R不存在“穩(wěn)定區(qū)間”,故①不存在“穩(wěn)定區(qū)間”;函數(shù)f(x)=x3存在穩(wěn)定區(qū)間[-1,0]或[0,1]或[-1,1],故②存在“穩(wěn)定區(qū)間”;函數(shù)f(x)=cos存在穩(wěn)定區(qū)間[0,1],故③存在“穩(wěn)定區(qū)間”;函數(shù)
f(x)=ln x+1在(0,+∞)上遞增,且ln x+1≤xx>0恒成立,函數(shù)f(x)=ln x+1在定義域上不存在“穩(wěn)定區(qū)間”,故④不存在“穩(wěn)定區(qū)間”.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

現(xiàn)有A,B兩個(gè)投資項(xiàng)目,投資兩項(xiàng)目所獲得利潤(rùn)分別是(萬(wàn)元),它們與投入資金(萬(wàn)元)的關(guān)系依次是:其中平方根成正比,且當(dāng)為4(萬(wàn)元)時(shí)為1(萬(wàn)元),又成正比,當(dāng)為4(萬(wàn)元)時(shí)也是1(萬(wàn)元);某人甲有3萬(wàn)元資金投資.
(1)分別求出的函數(shù)關(guān)系式;
(2)請(qǐng)幫甲設(shè)計(jì)一個(gè)合理的投資方案,使其獲利最大,并求出最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

若函數(shù)f(x)對(duì)任意的實(shí)數(shù)x1,x2D,均有|f(x2)-f(x1)|≤|x2x1|,則稱函數(shù)f(x)是區(qū)間D上的“平緩函數(shù)”.
(1)判斷g(x)=sin xh(x)=x2x是不是實(shí)數(shù)集R上的“平緩函數(shù)”,并說(shuō)明理由;
(2)若數(shù)列{xn}對(duì)所有的正整數(shù)n都有|xn+1xn|≤,設(shè)yn=sin xn,求證:|yn+1y1|<.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

一次函數(shù)的圖像過點(diǎn),則下列各點(diǎn)在函數(shù)的圖像上的是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)f(x)是定義在R上的增函數(shù),且對(duì)于任意的x都有f(1-x)+f(1+x)=0恒成立.如果實(shí)數(shù)m、n滿足不等式組那么m2+n2的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=.
(1)若f(x)>k的解集為{x|x<-3,或x>-2},求k的值;
(2)對(duì)任意x>0,f(x)≤t恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)f(x)=則函數(shù)f(x)的零點(diǎn)為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=的圖象過原點(diǎn),且關(guān)于點(diǎn)(-1,2)成中心對(duì)稱.
(1)求函數(shù)f(x)的解析式;
(2)若數(shù)列{an}滿足a1=2,an+1f(an),試證明數(shù)列為等比數(shù)列,并求出數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)則滿足的實(shí)數(shù)=             

查看答案和解析>>

同步練習(xí)冊(cè)答案