已知橢圓的離心率為,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為.
(1)求橢圓的方程;
(2)設(shè)不與坐標(biāo)軸平行的直線(xiàn)與橢圓交于兩點(diǎn),坐標(biāo)原點(diǎn)到直線(xiàn)的距離為,求面積的最大值.
(1)橢圓的方程為;(2)面積的最大值為

試題分析:(1)求橢圓的方程,可利用待定系數(shù)法求出的值即可,依題意,可得:,從而可得的值,即得橢圓的方程;(2)由于直線(xiàn)l是任意的,故可設(shè)其方程為.根據(jù)坐標(biāo)原點(diǎn)到直線(xiàn)的距離為,可得的關(guān)系式,從而將雙參數(shù)問(wèn)題變?yōu)閱螀?shù)問(wèn)題.將作為底邊,則的高為常數(shù),所以要使的面積最大,就只需邊最大.將表示出來(lái)便可求得的最大值,從而求得的面積的最大值.
試題解析:(1)依題意,可得:
所以,橢圓;
(2)坐標(biāo)原點(diǎn)到直線(xiàn)的距離為,所以,
聯(lián)立可得:

所以,
由題意,得:,令,所以
,
所以,
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,橢圓的中心為原點(diǎn),長(zhǎng)軸在軸上,離心率,又橢圓上的任一點(diǎn)到橢圓的兩焦點(diǎn)的距離之和為.

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若平行于軸的直線(xiàn)與橢圓相交于不同的兩點(diǎn)、,過(guò)、兩點(diǎn)作圓心為的圓,使橢圓上的其余點(diǎn)均在圓外.求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知中心在原點(diǎn)的雙曲線(xiàn)C的一個(gè)焦點(diǎn)是F1(-3,0),一條漸近線(xiàn)的方程是
(1)求雙曲線(xiàn)C的方程;
(2)若以k(k≠0)為斜率的直線(xiàn)l與雙曲線(xiàn)C相交于兩個(gè)不同的點(diǎn)M, N,且線(xiàn)段MA的垂直平分線(xiàn)與兩坐標(biāo)軸圍成的三角形的面積為,求k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知為橢圓的左右焦點(diǎn),是坐標(biāo)原點(diǎn),過(guò)作垂直于軸的直線(xiàn)交橢圓于,設(shè) .
(1)證明: 成等比數(shù)列;
(2)若的坐標(biāo)為,求橢圓的方程;
(3)在(2)的橢圓中,過(guò)的直線(xiàn)與橢圓交于、兩點(diǎn),若,求直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線(xiàn)C的頂點(diǎn)為O(0,0),焦點(diǎn)為F(0,1).

(1)求拋物線(xiàn)C的方程;
(2)過(guò)點(diǎn)F作直線(xiàn)交拋物線(xiàn)C于A(yíng),B兩點(diǎn),若直線(xiàn)AO,BO分別交直線(xiàn)l:y=x-2于M,N兩點(diǎn),求|MN|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓E=1(ab>0),F1(-c,0),F2(c,0)為橢圓的兩個(gè)焦點(diǎn),M為橢圓上任意一點(diǎn),且|MF1|,|F1F2|,|MF2|構(gòu)成等差數(shù)列,點(diǎn)F2(c,0)到直線(xiàn)lx的距離為3.
(1)求橢圓E的方程;
(2)若存在以原點(diǎn)為圓心的圓,使該圓的任意一條切線(xiàn)與橢圓E恒有兩個(gè)交點(diǎn)A,B,且,求出該圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

中,,給出滿(mǎn)足的條件,就能得到動(dòng)點(diǎn)的軌跡方程,下表給出了一些條件及方程:
條件
方程
周長(zhǎng)為10

面積為10

中,

則滿(mǎn)足條件①、②、③的點(diǎn)軌跡方程按順序分別是 
A. 、、   B. 、、
C. 、    D. 、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知定點(diǎn)A (p為常數(shù),p>0),Bx軸負(fù)半軸上的一個(gè)動(dòng)點(diǎn),動(dòng)點(diǎn)M使得|AM|=|AB|,且線(xiàn)段BM的中點(diǎn)Gy軸上.

(1)求動(dòng)點(diǎn)M的軌跡C的方程;
(2)設(shè)EF為曲線(xiàn)C的一條動(dòng)弦(EF不垂直于x軸),其垂直平分線(xiàn)與x軸交于點(diǎn)T(4,0),當(dāng)p=2時(shí),求|EF|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

直線(xiàn)與曲線(xiàn)的交點(diǎn)個(gè)數(shù)是      

查看答案和解析>>

同步練習(xí)冊(cè)答案