已知點(diǎn) P(x,y)的坐標(biāo)滿足條件數(shù)學(xué)公式,則數(shù)學(xué)公式的最大值和最小值分別是


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式,數(shù)學(xué)公式
  3. C.
    2,數(shù)學(xué)公式
  4. D.
    2,數(shù)學(xué)公式
A
分析:先根據(jù)約束條件畫出可行域,設(shè)z=,再利用z的幾何意義求最值,只需求出區(qū)域內(nèi)的點(diǎn)Q與點(diǎn)P(-2,-1)連線的斜率的取值范圍即可.
解答:先根據(jù)約束條件畫出可行域,
設(shè)z=,
將z轉(zhuǎn)化區(qū)域內(nèi)的點(diǎn)Q與點(diǎn)P(-2,-1)連線的斜率,
當(dāng)動(dòng)點(diǎn)Q在點(diǎn)A(2,2)時(shí),z的值為:最大,
當(dāng)動(dòng)點(diǎn)Q在點(diǎn)C(3,1)時(shí),z的值為:最小,
z=最大值為,最小值為
故選A.
點(diǎn)評:本題主要考查了用平面區(qū)域二元一次不等式組,以及簡單的轉(zhuǎn)化思想和數(shù)形結(jié)合的思想,屬中檔題.目標(biāo)函數(shù)有唯一最優(yōu)解是我們最常見的問題,這類問題一般要分三步:畫出可行域、求出關(guān)鍵點(diǎn)、定出最優(yōu)解.借助于平面區(qū)域特性,用幾何方法處理代數(shù)問題,體現(xiàn)了數(shù)形結(jié)合思想、化歸思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(x,y)在不等式組
x-2≤0
y-1≤0
x+2y-2≥0
表示的平面區(qū)域上運(yùn)動(dòng),則z=y-x的取值范圍是( 。
A、[-2,-1]
B、[-2,1]
C、[-1,2]
D、[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(x,y)為圓C:x2+y2-6x+8=0上的一點(diǎn),則x2+y2的最大值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(x,y)滿足橢圓方程2x2+y2=1,則
2x+y-2
x-1
的最大值為
2+
2
2+
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(x,y)是拋物線y2=-12x的準(zhǔn)線與雙曲線
x2
6
-
y2
2
=1
的兩條漸近線所圍成的三角形平面區(qū)域內(nèi)(含邊界)的任意一點(diǎn),則z=2x-y的最大值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(x,y)在曲線
x=2+cosθ
y=2sinθ
(θ為參數(shù)),則ω=3x+2y的最大值為
11
11

查看答案和解析>>

同步練習(xí)冊答案