【題目】(1) 若函數(shù)f(x)=|4x-x2|+a有4個零點,求實數(shù)a的取值范圍;

(2) 已知函數(shù)f(x)=x2+2mx+3m+4.

① 若函數(shù)f(x)有且僅有一個零點,求實數(shù)m的值;

若函數(shù)f(x)有兩個零點且兩個零點均比-1大,求實數(shù)m的取值范圍.

【答案】(1)(-4,0).(2)(-5,-1).

【解析】試題分析:(1)利用函數(shù)圖像研究函數(shù)零點:先作出函數(shù)g(x)=|4x-x2|圖像,再研究直線y=-a與它有四個交點的條件,即得實數(shù)a的取值范圍;(2)①由二次函數(shù)得Δ=0,解得實數(shù)m的值;②由實根分布充要條件得 ,解不等式組可得實數(shù)m的取值范圍.

試題解析:解: (1) 令f(x)=0,得|4x-x2|+a=0,

即|4x-x2|=-a.

令g(x)=|4x-x2|,h(x)=-a.作出g(x),h(x)的圖象.

由圖象可知,當0<-a<4,即-4<a<0時,g(x)與h(x)的圖象有4個交點,即f(x)有4個零點.故a的取值范圍是(-4,0).

(2) ① f(x)=x2+2mx+3m+4有且僅有一個零點f(x)=0有兩個相等實根Δ=0,即4m2-4(3m+4)=0,即m2-3m-4=0,

∴ m=4或m=-1.

② 由題意,知

∴ -5<m<-1.

∴ m的取值范圍是(-5,-1).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點為,且橢圓上一點到其兩焦點的距離之和為

1求橢圓的標準方程;

2設直線與橢圓交于不同兩點,,,若點滿足的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD的底面為平行四邊形,PD⊥平面ABCD,M為PC中點.

(1)求證:AP∥平面MBD;

(2)若AD⊥PB,求證:BD⊥平面PAD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,已知曲線為參數(shù)),在以為極點, 軸正半軸為極軸的極坐標系中,曲線,曲線.

(1)求曲線的交點的直角坐標;

(2)設點, 分別為曲線上的動點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)h(x)=(m2-5m+1)xm+1為冪函數(shù),且為奇函數(shù).

(I)求m的值;

(II)求函數(shù)g(x)=h(x)+,x的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),曲線在點處的切線與直線垂直(其中為自然對數(shù)的底數(shù)).

1)求的解析式及單調(diào)遞減區(qū)間;

2)是否存在常數(shù),使得對于定義域內(nèi)的任意, 恒成立,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,

(1)若函數(shù)的兩個極值點為,求函數(shù)的解析式;

(2)在(1)的條件下,求函數(shù)的圖象過點的切線方程;

(3)對一切恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線經(jīng)過點A,求:

1直線在兩坐標軸上的截距相等的直線方程;

2直線與兩坐標軸的正半軸圍成三角形面積最小時的直線方程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形ABCD為正方形, 為直角三角形, ,且.

1)證明:平面平面;

2)若AB=2AE,求異面直線BEAC所成角的余弦值.

查看答案和解析>>

同步練習冊答案