設(shè)函數(shù)f(x)=-lnx,則y=f(x)

A.在區(qū)間(,1),(1,e)內(nèi)均有零點(diǎn)

B.在區(qū)間(,1),(1,e)內(nèi)均無零點(diǎn)

C.在區(qū)間(,1)內(nèi)有零點(diǎn),在區(qū)間(1,e)內(nèi)無零點(diǎn)

D.在區(qū)間(,1)內(nèi)無零點(diǎn),在區(qū)間(1,e)內(nèi)有零點(diǎn)

 

【答案】

D

【解析】

試題分析:先對函數(shù)f(x)進(jìn)行求導(dǎo),再根據(jù)導(dǎo)函數(shù)的正負(fù)情況判斷原函數(shù)的增減性可得答案.解:由題得f′(x)= ,令f′(x)>0得x>3;令f′(x)<0得0<x<3;f′(x)=0得x=3,故知函數(shù)f(x)在區(qū)間(0,3)上為減函數(shù),在區(qū)間(3,+∞)為增函數(shù),在點(diǎn)x=3處有極小值1-ln3<0;又f(1)= >0,f(e)= -1<0,f()=+1>0.故選D.

考點(diǎn):導(dǎo)函數(shù)的增減性與原函數(shù)的單調(diào)性

點(diǎn)評:本題主要考查導(dǎo)函數(shù)的增減性與原函數(shù)的單調(diào)性之間的關(guān)系.即當(dāng)導(dǎo)函數(shù)大于0時(shí)原函數(shù)單調(diào)遞增,當(dāng)導(dǎo)函數(shù)小于0時(shí)原函數(shù)單調(diào)遞減.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在非零實(shí)數(shù)l使得對于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的l高調(diào)函數(shù).

(1)如果定義域?yàn)閇-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的m高調(diào)函數(shù),求實(shí)數(shù)m的取值范圍.

(2)如果定義域?yàn)镽的函數(shù)f(x)是奇函數(shù),當(dāng)x≥0時(shí),f(x)=|x-a2|-a2,且f(x)為R上的4高調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(20)已知a>0,函數(shù)fx)=,x∈(0,+∞).設(shè)0<x1,設(shè)曲線yfx)在

點(diǎn)Mx1,fx1))處的切線為l.

(Ⅰ)求l的方程;

(Ⅱ)設(shè)lx軸交點(diǎn)為(x2,0).證明:

 

(i)0<x2;

 

(ii)若x1,則x1x2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a(x+)+2lnx,g(x)=

(Ⅰ)若a>0且a≠2,直線l與函數(shù)f(x)和函數(shù)g(x)的圖象相切于一點(diǎn),求切線l的方程.

  (Ⅱ)若f(x)在[2,4]內(nèi)為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的導(dǎo)數(shù)f′(x)=3x2-3ax,f(0)=b,a,b為實(shí)數(shù),1<a<2.

(1)若f(x)在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,求a、b的值;

(2)在(1)的條件下,求經(jīng)過點(diǎn)P(2,1)且與曲線f(x)相切的直線l的方程;

(3)設(shè)函數(shù)F(x)=[f′(x)+6x+1]·e2x,試判斷函數(shù)F(x)的極值點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江省杭州十四中2011-2012學(xué)年高三2月月考試題-數(shù)學(xué)(理) 題型:解答題

 

    已知函數(shù)f x)=lnx,gx)=ex

    (I)若函數(shù)φ x) = f x)-,求函數(shù)φ x)的單調(diào)區(qū)間;

    (Ⅱ)設(shè)直線l為函數(shù) yf x) 的圖象上一點(diǎn)Ax0,f x0))處的切線.證明:在區(qū)間(1,+∞)上存在唯一的x0,使得直線l與曲線y=gx)相切.

    注:e為自然對數(shù)的底數(shù).

 

 

 

查看答案和解析>>

同步練習(xí)冊答案