分析 由數列的通項公式可得$\underset{lim}{n→∞}$an=$\underset{lim}{n→∞}$$\frac{2n+1}{5n+1}$,再由$\underset{lim}{n→∞}$$\frac{1}{n}$=0,即可得到所求值.
解答 解:由數列{an}的通項公式an=$\left\{\begin{array}{l}{(\frac{1}{3})^{n},1≤n≤100}\\{\frac{2n+1}{5n-1},n>100}\end{array}\right.$,
可得$\underset{lim}{n→∞}$an=$\underset{lim}{n→∞}$$\frac{2n+1}{5n+1}$=$\underset{lim}{n→∞}$$\frac{2+\frac{1}{n}}{5+\frac{1}{n}}$=$\frac{2+0}{5+0}$=$\frac{2}{5}$.
故答案為:$\frac{2}{5}$.
點評 本題考查數列極限的運算,注意運用$\underset{lim}{n→∞}$$\frac{1}{n}$=0,考查運算能力,屬于基礎題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 銳角三角形 | B. | 直角三角形 | ||
C. | 等腰三角形 | D. | 等腰或直角三角形 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ①② | B. | ②③ | C. | ①③ | D. | ①②③ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | f(λ)先增大后減小,且最小值為1 | B. | f(λ)先減小后增大,且最小值為1 | ||
C. | f(λ)先減小后增大,且最小值為$\frac{{\sqrt{5}}}{5}$ | D. | f(λ)先增大后減小,且最小值為$\frac{{\sqrt{5}}}{5}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 8 | B. | 11 | C. | 9 | D. | 12 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com