已知P(1,1)是直線l被橢圓
x2
4
+
y2
3
=1所截得的線段的中點(diǎn),則直線l的方程為
 
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)直線l與橢圓交于P1(x1,y1)、P2(x2,y2),由“點(diǎn)差法”可求出直線l的斜率k=
y1-y2
x1-x2
=-
3(x1+x2)
4(y1+y2)
=-
3×2
4×2
=-
3
4
.再由由點(diǎn)斜式可得l的方程.
解答: 解:設(shè)直線l與橢圓交于P1(x1,y1)、P2(x2,y2),
將P1、P2兩點(diǎn)坐標(biāo)代入橢圓方程相減得直線l斜率
k=
y1-y2
x1-x2
=-
3(x1+x2)
4(y1+y2)
=-
3×2
4×2
=-
3
4

由點(diǎn)斜式可得l的方程3x+4y-7=0
點(diǎn)評(píng):本題考查橢圓的中點(diǎn)弦方程,解題的常規(guī)方法是“點(diǎn)差法”.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出以下四個(gè)命題:
①“正三角形都相似”的逆命題;
②已知樣本9,10,11,x,y的平均數(shù)是10,標(biāo)準(zhǔn)差是
2
,則xy=100;
③“-3<m<5”是“方程
x2
5-m
+
y2
m+3
=1
表示橢圓”的必要不充分條件;
④△ABC中,頂點(diǎn)A,B的坐標(biāo)為A(-2,0),B(2,0),則直角頂點(diǎn)C的軌跡方程是x2+y2=4
其中正確命題的序號(hào)是
 
(寫出所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個(gè)命題正確的是( 。
①線性相關(guān)系數(shù)r越大,兩個(gè)變量的線性相關(guān)性越強(qiáng);反之,線性相關(guān)性越弱;
②殘差平方和越小的模型,擬合的效果越好;
③用相關(guān)指數(shù)R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好;
④隨機(jī)誤差e是衡量預(yù)報(bào)精確度的一個(gè)量,它的平均值為0.
A、①③B、②④C、①④D、②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足a1+3a2+32a3+…+3n-1an=
n
3
,則數(shù)列{an}的通項(xiàng)公式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0.
(1)判斷直線l與圓C的位置關(guān)系;
(2)當(dāng)直線l與圓C相交時(shí),求直線l被圓C截得的最短弦長(zhǎng)及此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有6×6的方陣,3輛完全相同的紅車,3輛完全相同的黑車,它們均不在同一行且不在同一列,則所有的排列方法種數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)y=f(x)滿足f′(x)>2x(x∈R),且f(1)=2,則不等式f(x)-x2>1的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
(1)平行于同一直線的兩個(gè)平面平行;
(2)平行于同一平面的兩條直線平行;
(3)垂直于同一直線的兩條直線平行;
(4)垂直于同一平面的兩條直線平行.
其中正確命題的個(gè)數(shù)是(  )
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

兩個(gè)物體在相距為423m的同一直線上從0s開始同時(shí)相向運(yùn)動(dòng),物體A的運(yùn)動(dòng)速度v與時(shí)間t之間的關(guān)系為v=2t+1(v的單位是m/s,t的單位是s),物體B的運(yùn)動(dòng)速度v與時(shí)間t之間的關(guān)系為v=1+8t,.則它們相遇時(shí),A物體的運(yùn)動(dòng)路程為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案