10.已知函數(shù)f(x)=ax-lnx,函數(shù)g(x)=$\frac{1}{3}b{x}^{3}$-bx,a∈R,b∈R且b≠0.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若a=1,且對任意的x1(1,2),總存在x2∈(1,2),使f(x1)+g(x2)=0成立,求實數(shù)b的取值范圍.

分析 (1)先確定函數(shù)f(x)的定義域,然后對函數(shù)f(x)求導,根據(jù)導函數(shù)大于0時原函數(shù)單調(diào)遞增,導函數(shù)小于0時原函數(shù)單調(diào)遞減求出單調(diào)區(qū)間.
(2)分別表示出函數(shù)h(x)=-f(x)、g(x)的值域,根據(jù)f(x)的值域應為g(x)的值域的子集可得答案.

解答 解:(1)f(x)=lnx-ax,
∴x>0,即函數(shù)f(x)的定義域為(0,+∞)
∴當a≤0時,f(x)在(0,+∞)上是增函數(shù)
當a>0時,∵f'(x)=$\frac{1}{x}$-a=$\frac{1-ax}{x}$,
∵f′(x)>0,則1-ax>0,ax<1,x<$\frac{1}{a}$,f′(x)<0,則1-ax<0,ax>1,
x>$\frac{1}{a}$即當a>0時f(x)在(0,$\frac{1}{a}$)上是增函數(shù),在($\frac{1}{a}$,+∞)上是減函數(shù).
(2)則由已知,對于任意的x1∈(1,2),總存在x2∈(1,2),
使-f(x1)=g(x2),
設h(x)=-f(x)在(1,2)的值域為A,g(x)在(1,2)的值域為B,
得A⊆B
由(1)知a=1時,h′(x)=$\frac{1-x}{x}$<0在(1,2)1上是減函數(shù),
∴h(x)在x∈(1,2)上單調(diào)遞減,
∴h(x)的值域為A=(ln2-2,-1)
∵g'(x)=bx2-b=b(x-1)(x+1)
∴(i)當b<0時,g(x)在(1,2)上是減函數(shù),
此時,g(x)的值域為B=($\frac{2}{3}$b,-$\frac{2}{3}$b)
為滿足A⊆B,又-$\frac{2}{3}$b≥0>-1
∴$\frac{2}{3}$b≤ln2-2.即b≤$\frac{3}{2}$ln2-3.
(ii)當b>0時,g(x)在(1,2)上是單調(diào)遞增函數(shù),
此時,g(x)的值域為B=(-$\frac{2}{3}$b,$\frac{2}{3}$b)
為滿足A⊆B,又$\frac{2}{3}$b≥0>-1.
∴-$\frac{2}{3}$b≤ln2-2
∴b≥-$\frac{3}{2}$(ln2-2)=3-$\frac{3}{2}$ln2,
綜上可知b的取值范圍是(-∞,$\frac{3}{2}$ln2-3]∪[3-$\frac{3}{2}$ln2,+∞).

點評 本題主要考查函數(shù)單調(diào)性與其導函數(shù)的正負之間的關系,即當導函數(shù)大于0時原函數(shù)單調(diào)遞增,當導函數(shù)小于0時原函數(shù)單調(diào)遞減.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

20.下列函數(shù)中,在(0,2)上為增函數(shù)的是( 。
A.y=-3x+2B.$y=\frac{2}{x}$C.y=x2+5D.y=x2-x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.$\int_{-1}^1{({|x|+sinx})}$dx=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若復數(shù)z=(2-ai)(1+i)的實部為1,則實數(shù)a的值為( 。
A.1B.-1C.3D.-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.若拋物線y2=2px(p>0)上的點$A({x}_{0},\sqrt{2})$到其焦點的距離是A到y(tǒng)軸距離的3倍,則P=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知集合A={x|x2-4x-12<0},B={x|2x>log${\;}_{\sqrt{3}}$3},則A∩B等于( 。
A.($\frac{3}{2},6$)B.($\frac{3}{2},2$)C.(1,6)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知函數(shù)$f(x)=\left\{\begin{array}{l}{-2,0<x<1}\\{1,x≥1}\end{array}\right.$則不等式$lo{g}_{2}x-(lo{g}_{\frac{1}{4}}4x-1)f(lo{g}_{3}x+1)≤5$的解集為( 。
A.($\frac{1}{3}$,1)B.[1,4]C.($\frac{1}{3}$,4]D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.某三棱錐的三視圖如圖所示,則該三棱錐的體積為( 。
A.$\frac{{64\sqrt{3}}}{3}$B.$\frac{{16\sqrt{3}}}{3}$C.$\frac{{32\sqrt{3}}}{3}$D.$\frac{32}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知數(shù)列{an}滿足a1=1,an+1-3an=1.
(1)證明:$\{{a_n}+\frac{1}{2}\}$是等比數(shù)列,并求{an}的通項公式;
(2)設bn=2nan+n,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

同步練習冊答案