10.已知隨機(jī)變量ζ服從正態(tài)分布N(2,4),且P(ζ<4)=0.8,則P(0<ζ<2)=( 。
A.0.6B.0.4C.0.3D.0.2

分析 根據(jù)隨機(jī)變量X服從正態(tài)分布N(2,σ2),看出這組數(shù)據(jù)對應(yīng)的正態(tài)曲線的對稱軸x=2,根據(jù)正態(tài)曲線的特點(diǎn),得到P(0<ξ<2)=$\frac{1}{2}$P(0<ξ<4),得到結(jié)果.

解答 解:∵隨機(jī)變量X服從正態(tài)分布N(2,σ2),
μ=2,得對稱軸是x=2.
P(ξ<4)=0.8
∴P(ξ≥4)=P(ξ≤0)=0.2,
∴P(0<ξ<4)=0.6  
∴P(0<ξ<2)=$\frac{1}{2}$P(0<ξ<4)=0.3.
故選:C.

點(diǎn)評(píng) 本題考查正態(tài)曲線的形狀認(rèn)識(shí),從形態(tài)上看,正態(tài)分布是一條單峰、對稱呈鐘形的曲線,其對稱軸為x=μ,并在x=μ時(shí)取最大值 從x=μ點(diǎn)開始,曲線向正負(fù)兩個(gè)方向遞減延伸,不斷逼近x軸,但永不與x軸相交,因此說曲線在正負(fù)兩個(gè)方向都是以x軸為漸近線的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知z∈C,且|z-2-2i|=1,則|z|的最小值為2$\sqrt{2}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A={0,1,-1},B={x|x2-2x-3=0},則A∩B=(  )
A.{-1}B.{1}C.{0}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知集合A={x|x2-3x+2=0},B={x|x2-(m+1)x+m=0},若B?A,則m=1;若B⊆A,則m=1或2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在數(shù)列{an}中,已知a1=1,an+1=2an+1,( n∈N*).
(Ⅰ)求證:{an+1}為等比數(shù)列;并求出數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=$\frac{n}{{{a_{n+1}}-{a_n}}}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知集合A={x||x-a|≤1},B={x|x2-5x+4≤0}.
(1)當(dāng)a=1時(shí),求A∪B;
(2)已知“x∈A”是“x∈B”的充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{an}各項(xiàng)均為正數(shù),Sn為其前n項(xiàng)和,且對任意的n∈N*,都有4Sn=(an+1)2
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若en≥tSn對任意的n∈N*恒成立,求實(shí)數(shù)t的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.△ABC中,角A、B、C所對的邊分別是a、b、c,且c2-b2=ab,C=$\frac{π}{3}$,則$\frac{sinA}{sinB}$的值為( 。
A.$\frac{1}{2}$B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下面有四個(gè)命題:
(1)若-a不屬于N,則a屬于N;
(2)若a∈N,b∈N,則a+b的最小值為0;
(3)x2+1=2x的解可表示為{1,1};
其中正確命題的個(gè)數(shù)為( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

同步練習(xí)冊答案