二次函數(shù)f(x)=x2-4x(x∈[0,5])的值域是
[     ]

A.[-4,+∞)
B.[0,5]
C.[-4,5]
D.[-4,0]

練習冊系列答案
  • 課課練與單元測試系列答案
  • 世紀金榜小博士單元期末一卷通系列答案
  • 單元測試AB卷臺海出版社系列答案
  • 黃岡新思維培優(yōu)考王單元加期末卷系列答案
  • 名校名師奪冠金卷系列答案
  • 小學英語課時練系列答案
  • 培優(yōu)新幫手系列答案
  • 天天向上一本好卷系列答案
  • 小學生10分鐘應(yīng)用題系列答案
  • 課堂作業(yè)廣西教育出版社系列答案
  • 年級 高中課程 年級 初中課程
    高一 高一免費課程推薦! 初一 初一免費課程推薦!
    高二 高二免費課程推薦! 初二 初二免費課程推薦!
    高三 高三免費課程推薦! 初三 初三免費課程推薦!
    相關(guān)習題

    科目:高中數(shù)學 來源: 題型:

    已知二次函數(shù)f(x)=ax2+bx+c(a,b,c為實數(shù)a不為零),且同時滿足下列條件:
    (1)f(-1)=0;
    (2)對于任意的實數(shù)x,都有f(x)-x≥0;
    (3)當x∈(0,2)時有f(x)≤(
    x+12
    )2

    ①求f(1);
    ②求a,b,c的值;
    ③當x∈[-1,1]時,函數(shù)g(x)=f(x)-mx(m∈R)是單調(diào)函數(shù),求m的取值范圍.

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:

    已知二次函數(shù)f(x)=ax2+bx+c(a∈N*),若不等式f(x)<2x的解集為(1,4),且方程f(x)=x有兩個相等的實數(shù)根.
    (1)求f(x)的解析式;
    (2)若不等式f(x)>mx在x∈(1,+∞)上恒成立,求實數(shù)m的取值范圍.

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:

    設(shè)二次函數(shù)f(x)=ax2+bx+c的圖象過點(0,1)和(1,4),且對于任意的實數(shù)x,不等式f(x)≥4x恒成立.
    (1)求函數(shù)f(x)的表達式;
    (2)設(shè)g(x)=kx+1,若F(x)=log2[g(x)-f(x)]在區(qū)間[1,2]上是增函數(shù),求實數(shù)k的取值范圍.

    查看答案和解析>>

    科目:高中數(shù)學 來源: 題型:

    已知二次函數(shù)f(x)=ax2+bx(a、b為常數(shù)且a≠0)滿足條件:f(-x+5)=f(x-3),且方程f(x)=x有等根.
    (1)求f(x)的解析式;
    (2)函數(shù)f(x)在(x∈[t,t+1],t∈R)的最大值為u(t),求u(t)解析式.

    查看答案和解析>>

    科目:高中數(shù)學 來源:2010-2011學年浙江省杭州高級中學高一(上)期中數(shù)學試卷(解析版) 題型:解答題

    設(shè)二次函數(shù)f(x)=ax2+bx+c的圖象過點(0,1)和(1,4),且對于任意的實數(shù)x,不等式f(x)≥4x恒成立.
    (1)求函數(shù)f(x)的表達式;
    (2)設(shè)g(x)=kx+1,若F(x)=log2[g(x)-f(x)]在區(qū)間[1,2]上是增函數(shù),求實數(shù)k的取值范圍.

    查看答案和解析>>

    同步練習冊答案