如圖,在三棱錐中,平面平面,于點,且,,
(1)求證:
(2)
(3)若,,求三棱錐的體積.
(1)參考解析;(2)參考解析;(3)
解析試題分析:(1)由,,即可得到線段成比例,即得到直線平行,再根據(jù)直線與平面平行的判斷定理即可得到結(jié)論.
(2)由平面平面,于點,并且AC是平面PAC與平面ABC的交線,根據(jù)平面垂直的性質(zhì)定理即可得PD垂直平面ABC,再根據(jù)平面與平面垂直的判斷定理即可得到結(jié)論.
(3)由即可得AC=3.又由,, 在三角形ABC中根據(jù)余弦定理即可求得BC的值.所以三角形ABC的面積可以求出來,由于PD垂直于平面ABC所以PD為三棱錐的高,即可求得結(jié)論.
(1), 2分
3分
(2)因為平面平面,
且平面平面,
平面,,
所以平面, 6分
又平面,
所以平面平面. 7分
(3)由(2)可知平面.
法一:中,,
由正弦定理,得,
因為,所以,則,因此, 8分
△的面積. 10分
所以三棱錐的體積. 12分
法二:中,,,由余弦定理得:
,所以,
所以. 8分
△的面積. 10分
所以三棱錐的體積. 12分
考點:1.線面平行.2.面面垂直.3.三角形的余弦定理.4.三棱錐的體積.
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直三棱柱的底面是等腰直角三角形,,側(cè)棱底面,且,是的中點.
(1)求直三棱柱的全面積;
(2)求異面直線與所成角的大。ńY(jié)果用反三角函數(shù)表示);
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,三角形中,,是邊長為的正方形,平面 ⊥底面,若、分別是、的中點.
(1)求證:∥底面;
(2)求證:⊥平面;
(3)求幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐PABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,BC=5,DC=3,AD=4,∠PAD=60°.
(1)當(dāng)正視方向與向量的方向相同時,畫出四棱錐PABCD的正視圖(要求標(biāo)出尺寸,并寫出演算過程);
(2)若M為PA的中點,求證:DM∥平面PBC;
(3)求三棱錐DPBC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
一個六棱柱的底面是正六邊形,其側(cè)棱垂直于底面,已知該六棱柱的頂點都在同一個球面上,且該六棱柱的高為,底面周長為3,那么這個球的體積為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在邊長為5+的長方形ABCD中,以A為圓心畫一個扇形,以O(shè)為圓心畫一個圓,M,N,K為切點,以扇形為圓錐的側(cè)面,以圓O為圓錐底面,圍成一個圓錐,求圓錐的全面積與體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com