17.當(dāng)m=1時,復(fù)數(shù)z=$\frac{1+i}{m-2i}$的虛部為( 。
A.$-\frac{1}{5}$B.$\frac{1}{5}$C.$-\frac{3}{5}$D.$\frac{3}{5}$

分析 直接把m=1代入復(fù)數(shù)z,再由復(fù)數(shù)代數(shù)形式的乘除運算化簡即可得答案.

解答 解:當(dāng)m=1時,z=$\frac{1+i}{m-2i}$=$\frac{1+i}{1-2i}=\frac{(1+i)(1+2i)}{(1-2i)(1+2i)}=\frac{-1+3i}{5}$=$-\frac{1}{5}+\frac{3}{5}i$,
∴復(fù)數(shù)z=$\frac{1+i}{m-2i}$的虛部為:$\frac{3}{5}$.
故選:D.

點評 本題考查了復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若x=2是函數(shù)f(x)=x(x-m)2的極大值點,則m的值為(  )
A.3B.6C.2或6D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.為了了解大學(xué)生觀看某電視節(jié)目是否與性別有關(guān),一所大學(xué)心理學(xué)教師從該校學(xué)生中隨機抽取了50人進行問卷調(diào)查,得到了如下的列聯(lián)表,若該教師采用分層抽樣的方法從50份問卷調(diào)查中繼續(xù)抽查了10份進行重點分析,知道其中喜歡看該節(jié)目的有6人.
  喜歡看該節(jié)目 不喜歡看該節(jié)目 合計
 女生  5 
 男生 10  
 合計   50
(1)請將上面的列聯(lián)表補充完整;
(2)是否有99.5%的把握認(rèn)為喜歡看該節(jié)目與性別有關(guān)?說明你的理由;
(3)已知喜歡看該節(jié)目的10位男生中,A1、A2、A3、A4、A5還喜歡看新聞,B1、B2、B3還喜歡看動畫片,C1、C2還喜歡看韓劇,現(xiàn)再從喜歡看新聞、動畫片和韓劇的男生中各選出1名進行其他方面的調(diào)查,求B1和C1不全被選中的概率.
下面的臨界值表供參考:
 P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.0050. 001
 k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(參考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知i為虛數(shù)單位,則復(fù)數(shù)$\frac{{1-\frac{1}{2}i}}{{1+\frac{1}{2}i}}$=(  )
A.$\frac{3}{5}$-$\frac{4}{5}$iB.$\frac{3}{5}$+$\frac{4}{5}$iC.$\frac{4}{5}$-$\frac{3}{5}$iD.$\frac{4}{5}$+$\frac{3}{5}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)f(x)=ln(5x-125)的定義域為(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.語文成績服從正態(tài)分布N(100,17.52),數(shù)學(xué)成績的頻率分布直方圖如圖,如果成績大于135的則認(rèn)為特別優(yōu)秀.
(1)這500名學(xué)生中本次考試語文、數(shù)學(xué)特別優(yōu)秀的大約各多少人?
(2)如果語文和數(shù)學(xué)兩科都特別優(yōu)秀的共有6人,
從(1)中的這些同學(xué)中隨機抽取3人,設(shè)三人中兩科都特別優(yōu)秀的有x人,求x的分布列和數(shù)學(xué)期望.(附公式及表)
若x~N(μ,σ2),則P(μ-σ<x≤μ+σ)=0.68,P(μ-2σ<x≤μ+2σ)=0.96.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.將函數(shù)y=3sin(2x+$\frac{π}{3}$)的圖象向右平移$\frac{π}{3}$個單位長度,所得圖象對應(yīng)的函數(shù)(  )
A.在區(qū)間[-$\frac{π}{12}$,$\frac{5}{12}$π]上單調(diào)遞增B.在區(qū)間[$\frac{π}{4},\frac{π}{4}$]上單調(diào)遞增
C.在區(qū)間[$\frac{π}{4}$,$\frac{3π}{4}$]上單調(diào)遞減D.在區(qū)間[-$\frac{π}{12}$,$\frac{5}{12}$π]上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.⊙Ox2+y2=25的圓心O到直線3x+4y+5=0的距離等于( 。
A.1B.3C.5D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.?dāng)?shù)列{an}中,a1=1,Sn為數(shù)列{an}的前n項和,且對?n≥2,都有$\frac{2{a}_{n}}{{a}_{n}{S}_{n}-{S}_{n}^{2}}$=1.則{an}的通項公式an=$\left\{\begin{array}{l}{1,n=1}\\{\frac{-2}{n(n+1)},n≥2}\end{array}\right.$.

查看答案和解析>>

同步練習(xí)冊答案