分析 由題意根據(jù)f(2x-1)<f(-1),可得|2x-1|<1,由此求得求得x的范圍.
解答 解:偶函數(shù)f(x)在區(qū)間(-∞,0]上單調(diào)遞減,f(-1)=$\frac{1}{2}$,
則由2f(2x-1)-1<0,得f(2x-1)<f(-1),
可得|2x-1|<1,∴-1<2x-1<1,求得0<x<1,
故x的取值范圍為(0,1),
故答案為:(0,1).
點(diǎn)評(píng) 本題主要考查函數(shù)的單調(diào)性和奇偶性的綜合應(yīng)用,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $[{0,\frac{π}{2}})∪[{\frac{2π}{3},π})$ | B. | $[{\frac{2π}{3},π})$ | C. | $[{0,\frac{π}{2}})∪[{\frac{5π}{6},π})$ | D. | $[{\frac{5π}{6},π})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-$\frac{5}{2}$,-$\frac{9}{4}$)∪(-$\frac{9}{4}$,-1] | B. | (-$\frac{5}{2}$,-$\frac{9}{4}$)∪(-$\frac{9}{4}$,-1) | C. | (-$\frac{5}{2}$,-$\frac{9}{4}$) | D. | (-$\frac{9}{4}$,-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=ax | B. | y=xa(a>0且a≠1) | C. | $y={(\frac{1}{2})^x}$ | D. | y=(a-2)ax |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com