已知點(diǎn)A(-2,0),B(2,0),動(dòng)點(diǎn)P滿足:

   (Ⅰ)求動(dòng)點(diǎn)P的軌跡Q的方程;

   (Ⅱ)過(guò)點(diǎn)B的直線l與軌跡Q交于兩點(diǎn)M,N。試問(wèn)x軸上是否存在定點(diǎn)C,使 為常數(shù),若存在,求出點(diǎn)C的坐標(biāo);若不存在,說(shuō)明理由。

解:(Ⅰ)依題意,由余弦定理得:,

  

.

,即. 

(當(dāng)動(dòng)點(diǎn)與兩定點(diǎn)共線時(shí)也符合上述結(jié)論)

動(dòng)點(diǎn)的軌跡為以為焦點(diǎn),實(shí)軸長(zhǎng)為的雙曲線.

所以,軌跡的方程為.   

(Ⅱ)假設(shè)存在定點(diǎn),使為常數(shù).

(1)當(dāng)直線 不與軸垂直時(shí),

設(shè)直線的方程為,代入整理得:

.          

由題意知,

設(shè),,則,

于是,  

.             

要使是與無(wú)關(guān)的常數(shù),當(dāng)且僅當(dāng),此時(shí)

(2)當(dāng)直線軸垂直時(shí),可得點(diǎn),

當(dāng)時(shí),.   

故在軸上存在定點(diǎn),使為常數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年福州質(zhì)檢二)(12分)

已知點(diǎn)A(-2,0),B(2,0),動(dòng)點(diǎn)P滿足:∠APB=2,且|PA||PB|sin2θ=2,

(Ⅰ)求證:動(dòng)點(diǎn)P的軌跡Q是雙曲線;

(Ⅱ)過(guò)點(diǎn)B的直線與軌跡Q交于兩點(diǎn)M,N.試問(wèn)軸上是否存在定點(diǎn)C,使為常數(shù),若存在,求出點(diǎn)C的坐標(biāo);若不存在,說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年平遙中學(xué)) (12分)  已知點(diǎn)A(-2,0),B(2,0),動(dòng)點(diǎn)P滿足:∠APB=2θ,且|PA||PB|sin2θ=2

(1)求動(dòng)點(diǎn)P的軌跡Q的方程;

(2)過(guò)點(diǎn)B的直線l與軌跡Q交于兩點(diǎn)M,N。試問(wèn)x軸上是否存在定點(diǎn)C,使?為常數(shù),若存在,求出點(diǎn)C的坐標(biāo);若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年平遙中學(xué)) (12分) 已知點(diǎn)A(-2,0),B(2,0),動(dòng)點(diǎn)P滿足:∠APB=2θ,且|PA||PB|sin2θ=2

(1)求動(dòng)點(diǎn)P的軌跡Q的方程;

(2)過(guò)點(diǎn)B的直線l與軌跡Q交于兩點(diǎn)M,N。試問(wèn)x軸上是否存在定點(diǎn)C,使?為常數(shù),若存在,求出點(diǎn)C的坐標(biāo);若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年平遙中學(xué)) (12分) 已知點(diǎn)A(-2,0),B(2,0),動(dòng)點(diǎn)P滿足:∠APB=2θ,且|PA||PB|sin2θ=2

(1)求動(dòng)點(diǎn)P的軌跡Q的方程;

(2)過(guò)點(diǎn)B的直線l與軌跡Q交于兩點(diǎn)M,N。試問(wèn)x軸上是否存在定點(diǎn)C,使?為常數(shù),若存在,求出點(diǎn)C的坐標(biāo);若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(-2,0),B(2,0),動(dòng)點(diǎn)P滿足:,且

   (Ⅰ)求動(dòng)點(diǎn)P的軌跡Q的方程;

   (Ⅱ)過(guò)點(diǎn)B的直線l與軌跡Q交于兩點(diǎn)M,N。試問(wèn)x軸上是否存在定點(diǎn)C,使 為常數(shù),若存在,求出點(diǎn)C的坐標(biāo);若不存在,說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案