已知數(shù)列的各項(xiàng)均為正數(shù),為其前項(xiàng)和,對于任意的,滿足關(guān)系式
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的通項(xiàng)公式是,前項(xiàng)和為,求證:對于任意的正整數(shù),總有.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
某產(chǎn)品具有一定的時效性,在這個時效期內(nèi),由市場調(diào)查可知,在不做廣告宣傳且每件獲利元的前提下,可賣出件;若做廣告宣傳,廣告費(fèi)為千元比廣告費(fèi)為千元時多賣出件.
(Ⅰ)試寫出銷售量與的函數(shù)關(guān)系式;
(Ⅱ)當(dāng)時,廠家應(yīng)生產(chǎn)多少件這種產(chǎn)品,做幾千元的廣告,才能獲利最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),數(shù)列滿足.
⑴求數(shù)列的通項(xiàng)公式;
⑵設(shè),若對恒成立,求實(shí)數(shù)的取值范圍;
⑶是否存在以為首項(xiàng),公比為的數(shù)列,,使得數(shù)列中每一項(xiàng)都是數(shù)列中不同的項(xiàng),若存在,求出所有滿足條件的數(shù)列的通項(xiàng)公式;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前項(xiàng)和為,若,
⑴證明數(shù)列為等差數(shù)列,并求其通項(xiàng)公式;
⑵令,①當(dāng)為何正整數(shù)值時,:②若對一切正整數(shù),總有,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)同時滿足:①不等式 的解集有且只有一個元素;②在定義域內(nèi)存在,使得不等式成立 設(shè)數(shù)列的前項(xiàng)和為
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)各項(xiàng)均不為零的數(shù)列中,所有滿足的正整數(shù)的個數(shù)稱為這個數(shù)列的變號數(shù),令(為正整數(shù)),求數(shù)列的變號數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)是正數(shù)組成的數(shù)列,.若點(diǎn)在函數(shù)的導(dǎo)函數(shù)圖像上.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),是否存在最小的正數(shù),使得對任意都有成立?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)等差數(shù)列的前項(xiàng)和,且,.
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列滿足
(1)設(shè)是公差為的等差數(shù)列.當(dāng)時,求的值;
(2)設(shè)求正整數(shù)使得一切均有
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com