(本小題滿分12分)

已知直線l:y=x,圓C1的圓心為(3,0),且經(jīng)過(4,1)點.

(1)求圓C1的方程;

(2)若圓C2與圓C1關(guān)于直線l對稱,點A、B分別為圓C1、C2上任意一點,求|AB|的最小值;

(3)已知直線l上一點M在第一象限,兩質(zhì)點P、Q同時從原點出發(fā),點P以每秒1個單位的速度沿x軸正方向運動,點Q以每秒個單位沿射線OM方向運動,設(shè)運動時間為t秒.問:當t為何值時直線PQ與圓C1相切?

 

【答案】

(1)(2)(3)

【解析】

試題分析:(Ⅰ)依題意,設(shè)圓的方程為 ………1分

∵ 圓經(jīng)過點

∴   …………2分

∴ 圓的方程為  …………3分

(Ⅱ)方法一:由(Ⅰ)可知,圓的圓心的坐標為,半徑為 

到直線的距離

   …………5分

∴ 圓到直線的最短距離為 …………6分

∵ 圓與圓關(guān)于直線對稱

∴ .     …………7分

方法二:∵圓與圓關(guān)于直線對稱.

∴ 圓圓心為(0,3),半徑為 ……………5分

∴ ||=

∴ =-2×= ………………7分

(Ⅲ)當運動時間為秒時,,

                     …………8分

可設(shè)點坐標為),

          

解得,即      

∴        

∴ 直線方程為,即 ……………10分

若直線與圓相切,則到直線的距離

  …………11分

解得 

答:當時,直線與圓相切  …………12分

考點:利用點的對稱求最值與圓的方程直線與圓的位置關(guān)系

點評:求與圓上的動點有關(guān)的距離最值問題通常先求出到圓心的距離

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設(shè).求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習冊答案