已知函數(shù)數(shù)學(xué)公式時,則下列結(jié)論不正確的是


  1. A.
    ?x∈R,等式f(-x)+f(x)=0恒成立
  2. B.
    ?m∈(0,1),使得方程|f(x)|=m有兩個不等實數(shù)根
  3. C.
    ?x1,x2∈R,若x1≠x2,則一定有f(x1)≠f(x2
  4. D.
    ?k∈(1,+∞),使得函數(shù)g(x)=f(x)-kx在R上有三個零點
D
分析:通過函數(shù)的基本性質(zhì)--奇偶性和單調(diào)性,對選項進行逐一驗證即可.
解答:∵f(-x)==-f(x) 故A中結(jié)論正確,排除A.
令m=,|f(x)|=,可解得,x=或-,故B中結(jié)論正確,排除B.
當x≥0時,f(x)=,f'(x)=>0,故原函數(shù)在[0,+∞)單調(diào)遞增
當x<0時,f(x)=,f'(x)=>0,故原函數(shù)在(-∞,0)單調(diào)遞增
故函數(shù)在R上但單調(diào)遞增,故C中結(jié)論正確,排除C.
故選D.
點評:本題主要考查函數(shù)的基本性質(zhì),即奇偶性、單調(diào)性問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河南省洛陽市宜陽實驗中學(xué)高三(上)第二次周練數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知函數(shù)時,則下列結(jié)論不正確的是( )
A.?x∈R,等式f(-x)+f(x)=0恒成立
B.?m∈(0,1),使得方程|f(x)|=m有兩個不等實數(shù)根
C.?x1,x2∈R,若x1≠x2,則一定有f(x1)≠f(x2
D.?k∈(1,+∞),使得函數(shù)g(x)=f(x)-kx在R上有三個零點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年北京市東城區(qū)東直門中學(xué)高三數(shù)學(xué)提高測試試卷5(理科)(解析版) 題型:選擇題

已知函數(shù)時,則下列結(jié)論不正確的是( )
A.?x∈R,等式f(-x)+f(x)=0恒成立
B.?m∈(0,1),使得方程|f(x)|=m有兩個不等實數(shù)根
C.?x1,x2∈R,若x1≠x2,則一定有f(x1)≠f(x2
D.?k∈(1,+∞),使得函數(shù)g(x)=f(x)-kx在R上有三個零點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年高考數(shù)學(xué)調(diào)研試卷(理科)(解析版) 題型:選擇題

已知函數(shù)時,則下列結(jié)論不正確的是( )
A.?x∈R,等式f(-x)+f(x)=0恒成立
B.?m∈(0,1),使得方程|f(x)|=m有兩個不等實數(shù)根
C.?x1,x2∈R,若x1≠x2,則一定有f(x1)≠f(x2
D.?k∈(1,+∞),使得函數(shù)g(x)=f(x)-kx在R上有三個零點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年廣東省廣州大學(xué)附屬中學(xué)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:選擇題

已知函數(shù)時,則下列結(jié)論不正確的是( )
A.?x∈R,等式f(-x)+f(x)=0恒成立
B.?m∈(0,1),使得方程|f(x)|=m有兩個不等實數(shù)根
C.?x1,x2∈R,若x1≠x2,則一定有f(x1)≠f(x2
D.?k∈(1,+∞),使得函數(shù)g(x)=f(x)-kx在R上有三個零點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年河南省洛陽市宜陽實驗中學(xué)高三3月質(zhì)量調(diào)研數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知函數(shù)時,則下列結(jié)論不正確的是( )
A.?x∈R,等式f(-x)+f(x)=0恒成立
B.?m∈(0,1),使得方程|f(x)|=m有兩個不等實數(shù)根
C.?x1,x2∈R,若x1≠x2,則一定有f(x1)≠f(x2
D.?k∈(1,+∞),使得函數(shù)g(x)=f(x)-kx在R上有三個零點

查看答案和解析>>

同步練習(xí)冊答案