【題目】已知函數(shù)為定義域R上的奇函數(shù),且在R上是單調(diào)遞增函數(shù),函數(shù),數(shù)列為等差數(shù)列,且公差不為0,若,則( )
A. 45B. 15C. 10D. 0
【答案】A
【解析】
根據(jù)題意,由奇函數(shù)的性質(zhì)可得(-x)+f(x)=0,又由g(x)=f(x-5)+x且g(a1)+g(a2)+…+g(a9)=45,可得f(a1-5)+f(a2-5)+…+f(a9-5)+(a1+a2+…+a9)=45,結(jié)合等差數(shù)列的性質(zhì)可得f(a1-5)=-f(a9-5)=f(5-a9),進(jìn)而可得a1-5=5-a9,即a1+a9=10,進(jìn)而計(jì)算可得答案.
根據(jù)題意,函數(shù)y=f(x)為定義域R上的奇函數(shù),
則有f(-x)+f(x)=0,
∵g(x)=f(x-5)+x,
∴若g(a1)+g(a2)+…+g(a9)=45,
即f(a1-5)+a1+f(a2-5)+a2+…+f(a9-5)+a9=45,
即f(a1-5)+f(a2-5)+…+f(a9-5)+(a1+a2+…+a9)=45,
f(a1-5)+f(a2-5)+…+f(a9-5)=0,
又由y=f(x)為定義域R上的奇函數(shù),
則f(a1-5)+f(a9-5)=0,
即f(a1-5)=-f(a9-5)=f(5-a9),
∵f(x)在R上是單調(diào)函數(shù),
∴a1-5=5-a9,
即a1+a9=10,
在等差數(shù)列中,a1+a9=10=2a5,
即a5=5,
則a1+a2+…+a9=9a5=45;
故選:A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(Ⅰ)當(dāng)時,求的圖象在處的切線方程;
(Ⅱ)若函數(shù)有兩個不同零點(diǎn), ,且,求證: ,其中是的導(dǎo)函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為、,離心率,點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)設(shè)過點(diǎn)且不與坐標(biāo)軸垂直的直線交橢圓于、兩點(diǎn),線段的垂直平分線與軸交于點(diǎn),求點(diǎn)的橫坐標(biāo)的取值范圍;
(3)在第(2)問的條件下,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)已知橢圓:的焦距為,離心率為,其右焦點(diǎn)為,過點(diǎn)作直線交橢圓于另一點(diǎn).
(1)若,求外接圓的方程;
(2)若過點(diǎn)的直線與橢圓 相交于兩點(diǎn)、,設(shè)為上一點(diǎn),且滿足(為坐標(biāo)原點(diǎn)),當(dāng)時,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】兩次購買同一種物品,可以用兩種不同的策略,第一種是不考慮物品價格的升降,每次購買這種物品的數(shù)量一定;第二種是不考慮物品價格的升降,每次購買這種物品所花的錢數(shù)一定.哪種購物方式比較經(jīng)濟(jì)?你能把所得結(jié)論作一些推廣嗎?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某校高一年級學(xué)生中隨機(jī)抽取了20名學(xué)生,將他們的數(shù)學(xué)檢測成績(分)分成六段(滿分100分,成績均為不低于40分的整數(shù)):,,...,后,得到如圖所示的頻率分布直方圖.
(Ⅰ)求圖中實(shí)數(shù)的值;
(Ⅱ)若該校高一年級共有學(xué)生600名,試根據(jù)以上數(shù)據(jù),估計(jì)該校高一年級數(shù)學(xué)檢測成績不低于80分的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),曲線在點(diǎn)處的切線方程為.
(1)求,的值;
(2)若,求函數(shù)的單調(diào)區(qū)間;
(3)設(shè)函數(shù),且在區(qū)間內(nèi)存在單調(diào)遞減區(qū)間,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)F(1,0),O為坐標(biāo)原點(diǎn),A,B是拋物線C上異于 O的兩點(diǎn).
(1)求拋物線C的方程;
(2)若直線AB過點(diǎn)(8,0),求證:直線OA,OB的斜率之積為定值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)將一個半徑適當(dāng)?shù)男∏蚍湃肴鐖D所示的容器最上方的入口處,小球?qū)⒆杂上侣?/span>.小球在下落過程中,將3次遇到黑色障礙物,最后落入袋或袋中.已知小球每次遇到黑色障礙物時向左、右兩邊下落的概率都是.
(Ⅰ)求小球落入袋中的概率;
(Ⅱ)在容器入口處依次放入4個小球,記為落入袋中小球的個數(shù),試求的概率和的數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com