(本小題滿分12分) 已知函數(shù)f(x)= (1)作出函數(shù)的圖像簡(jiǎn)圖,并指出函數(shù)的單調(diào)區(qū)間; (2)若f(2-a2)>f(a),求實(shí)數(shù)a的取值范圍.
解析:(1) f(x)在(-∞,+∞)上是單調(diào)遞增函數(shù);(2)-2<a<1.
【解析】本試題主要是考查了分段函數(shù)的作圖,以及函數(shù)的單調(diào)性和不等式的求解綜合運(yùn)用。
(1)利用作出兩端二次函數(shù)的圖像得到第一問。
(2)由(1)可知f(x)在(-∞,+∞)上是單調(diào)遞增函數(shù)
故由f(2-a2)>f(a)得2-a2>a,求解得到參數(shù)a的范圍。
解析:(1) 略 ……………………………………………4分
由f(x)的圖象可知f(x)在(-∞,+∞)上是單調(diào)遞增函數(shù),……………………7分
(2)由(1)可知f(x)在(-∞,+∞)上是單調(diào)遞增函數(shù)
故由f(2-a2)>f(a)得2-a2>a,即a2+a-2<0,…………………………………10分
解得-2<a<1.…………………………………………12分
20. 【題文】 (本小題滿分13分)
(1)證明:函數(shù)在上是減函數(shù),在[,+∞)上是增函數(shù);
【答案】解: (1)證明:見解析;
(2)當(dāng)時(shí),方程無解;當(dāng)方程有一個(gè)解;當(dāng)時(shí),方程有兩個(gè)解.
【解析】本試題主要是考查了二次函數(shù)的單調(diào)性以及函數(shù)與方程的綜合運(yùn)用。
(1)根據(jù)但單調(diào)性的定義法,設(shè)變量,作差,變形定號(hào),下結(jié)論。
(2)在第一問的基礎(chǔ)上,結(jié)合單調(diào)性,得到函數(shù)的最值,然后分析得到參數(shù)的范圍。
解: (1)證明:設(shè),且
則==
==.………4分
(。┤,且,,所以,
即.所以函數(shù)在區(qū)間[,+∞)上單調(diào)遞增.………6分
(ⅱ)若,則且,,
所以,即.所以函數(shù)在區(qū)間[,+∞)上單調(diào)遞減.………………………………8分
(2)由(1)知函數(shù)在區(qū)間(1,)上單調(diào)遞減,在區(qū)間[,2]上單調(diào)遞增
所以的最小值=,的最大值=……………………10分
故當(dāng)時(shí),方程無解;當(dāng)方程有一個(gè)解;當(dāng)時(shí),方程有兩個(gè)解.………………………………………13分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:
(I)他們選擇的項(xiàng)目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤(rùn)與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬元.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com