【題目】已知函數(shù)為自然對數(shù)的底數(shù)).

1)若,求函數(shù)的圖像在點處的切線方程;

2上單調(diào)遞增,求實數(shù)的取值范圍.

【答案】12

【解析】

1)首先求導(dǎo),求出切點坐標(biāo)和斜率,再利用點斜式即可求出切線方程.

2)首先根據(jù)題意得到恒成立,令,得到,即,再分類討論的范圍證明上單調(diào)遞增即可.

1)當(dāng)時,

所以,切點為

所以切線方程為,即

2

所以

因為上單調(diào)遞增,則恒成立,

,則,得

下面證當(dāng)時,上單調(diào)遞增.

構(gòu)造函數(shù)

當(dāng)時,時,時,

單調(diào)遞減,在單調(diào)遞增.

,即恒成立,

整理得:恒成立,

即:恒成立,所以上單調(diào)遞增.

當(dāng)時,顯然在上單調(diào)遞增.

當(dāng)時,時,,時,

單調(diào)遞減,在單調(diào)遞增.

,即:恒成立,

整理得:恒成立,

從而恒成立,所以上單調(diào)遞增.

綜上,實數(shù)的取值范圍為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,橢圓的右準(zhǔn)線為直線,左頂點為,右焦點為. 已知斜率為2的直線經(jīng)過點,與橢圓相交于兩點,且到直線的距離為

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若過的直線與直線分別相交于兩點,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

(Ⅰ)若,解不等式;

(Ⅱ)當(dāng)時,函數(shù)的最小值為,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨機調(diào)查某城市80名有子女在讀小學(xué)的成年人,以研究晚上八點至十點時間段輔導(dǎo)子女作業(yè)與性別的關(guān)系,得到下面的數(shù)據(jù)表:

    是否輔導(dǎo)

性別

輔導(dǎo)

不輔導(dǎo)

合計

25

60

合計

40

80

1)請將表中數(shù)據(jù)補充完整;

2)用樣本的頻率估計總體的概率,估計這個城市有子女在讀小學(xué)的成人女性晚上八點至十點輔導(dǎo)子女作業(yè)的概率;

3)根據(jù)以上數(shù)據(jù),能否有99%以上的把握認(rèn)為“晚上八點至十點時間段是否輔導(dǎo)子女作業(yè)與性別有關(guān)?”.

參考公式:,其中.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】年新型冠狀病毒疫情爆發(fā),貴州省教育廳號召全體學(xué)生“停課不停學(xué)”.自日起,高三年級學(xué)生通過收看“陽光校園·空中黔課”進行線上網(wǎng)絡(luò)學(xué)習(xí).為了檢測線上網(wǎng)絡(luò)學(xué)習(xí)效果,某中學(xué)隨機抽取名高三年級學(xué)生做“是否準(zhǔn)時提交作業(yè)”的問卷調(diào)查,并組織了一場線上測試,調(diào)查發(fā)現(xiàn)有名學(xué)生每天準(zhǔn)時提交作業(yè),根據(jù)他們的線上測試成績得頻率分布直方圖(如圖所示);另外名學(xué)生偶爾沒有準(zhǔn)時提交作業(yè),根據(jù)他們的線上測試成績得莖葉圖(如圖所示,單位:分)

1)成績不低于分為等,低于分為非等.完成以下列聯(lián)表,并判斷是否有以上的把握認(rèn)為成績?nèi)〉?/span>等與每天準(zhǔn)時提交作業(yè)有關(guān)?

準(zhǔn)時提交作業(yè)與成績等次列聯(lián)表

單位:人

A

A

合計

每天準(zhǔn)時提交作業(yè)

偶爾沒有準(zhǔn)時提交作業(yè)

合計

2)成績低于分為不合格,從這名學(xué)生里成績不合格的學(xué)生中再抽取人,其中每天準(zhǔn)時提交作業(yè)的學(xué)生人數(shù)為,求的分布列與數(shù)學(xué)期望.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(Ⅰ)當(dāng)時,求的單調(diào)區(qū)間;

(Ⅱ)當(dāng)時,上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,回答所提問題:設(shè)函數(shù),①的定義域為,其圖像是一條連續(xù)不斷的曲線;②是偶函數(shù);③上不是單調(diào)函數(shù);④恰有個零點,寫出符合上述①②④條件的一個函數(shù)的解析式是______;寫出符合上述所有條件的一個函數(shù)的解析式是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】羽毛球比賽中,首局比賽由裁判員采用拋球的方法決定誰先發(fā)球,在每回合爭奪中,贏方得1分且獲得發(fā)球權(quán).每一局中,獲勝規(guī)則如下:①率先得到21分的一方贏得該局比賽;②如果雙方得分出現(xiàn),需要領(lǐng)先對方2分才算該局獲勝;③如果雙方得分出現(xiàn),先取得30分的一方該局獲勝.現(xiàn)甲、乙兩名運動員進行對抗賽,在每回合爭奪中,若甲發(fā)球時,甲得分的概率為;乙發(fā)球時,甲得分的概率為

(Ⅰ)若,記甲以贏一局的概率為,試比較的大小;

(Ⅱ)根據(jù)對以往甲、乙兩名運動員的比賽進行數(shù)據(jù)分析,得到如下列聯(lián)表部分?jǐn)?shù)據(jù).若不考慮其它因素對比賽的影響,并以表中兩人發(fā)球時甲得分的頻率作為,的值.

甲得分

乙得分

總計

甲發(fā)球

50

100

乙發(fā)球

60

90

總計

190

①完成列聯(lián)表,并判斷是否有95%的把握認(rèn)為比賽得分與接、發(fā)球有關(guān)?

②已知在某局比中,雙方戰(zhàn)成,且輪到乙發(fā)球,記雙方再戰(zhàn)回合此局比賽結(jié)束,求的分布列與期望.

參考公式:,其中

臨界值表供參考:

0.15

0.10

0.05

0.010

0.001

2.072

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知ABC的內(nèi)角A,B,C的對邊長分別等于ab,c,列舉如下五個條件:;②;③cosA+cos2A=0;④a=4;⑤ABC的面積等于.

1)請在五個條件中選擇一個(只需選擇一個)能夠確定角A大小的條件來求角A

2)在(1)的結(jié)論的基礎(chǔ)上,再在所給條件中選擇一個(只需選擇一個),求ABC周長的取值范圍

查看答案和解析>>

同步練習(xí)冊答案