【題目】已知函數(shù)(,為自然對數(shù)的底數(shù)).
(1)若,求函數(shù)的圖像在點處的切線方程;
(2)在上單調(diào)遞增,求實數(shù)的取值范圍.
【答案】(1)(2)
【解析】
(1)首先求導(dǎo),求出切點坐標(biāo)和斜率,再利用點斜式即可求出切線方程.
(2)首先根據(jù)題意得到恒成立,令,得到,即,再分類討論的范圍證明在上單調(diào)遞增即可.
(1)當(dāng)時,,
所以,切點為,
所以切線方程為,即
(2)
所以
因為在上單調(diào)遞增,則恒成立,
令,則,得
下面證當(dāng)時,在上單調(diào)遞增.
構(gòu)造函數(shù)
當(dāng)時,時,,時,
得在單調(diào)遞減,在單調(diào)遞增.
,即恒成立,
整理得:恒成立,
即:恒成立,所以在上單調(diào)遞增.
當(dāng)時,顯然在上單調(diào)遞增.
當(dāng)時,時,,時,
得在單調(diào)遞減,在單調(diào)遞增.
,即:恒成立,
整理得:恒成立,
從而恒成立,所以在上單調(diào)遞增.
綜上,實數(shù)的取值范圍為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,橢圓的右準(zhǔn)線為直線,左頂點為,右焦點為. 已知斜率為2的直線經(jīng)過點,與橢圓相交于兩點,且到直線的距離為
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若過的直線與直線分別相交于兩點,且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù).
(Ⅰ)若,解不等式;
(Ⅱ)當(dāng)時,函數(shù)的最小值為,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨機調(diào)查某城市80名有子女在讀小學(xué)的成年人,以研究晚上八點至十點時間段輔導(dǎo)子女作業(yè)與性別的關(guān)系,得到下面的數(shù)據(jù)表:
是否輔導(dǎo) 性別 | 輔導(dǎo) | 不輔導(dǎo) | 合計 |
男 | 25 | 60 | |
女 | |||
合計 | 40 | 80 |
(1)請將表中數(shù)據(jù)補充完整;
(2)用樣本的頻率估計總體的概率,估計這個城市有子女在讀小學(xué)的成人女性晚上八點至十點輔導(dǎo)子女作業(yè)的概率;
(3)根據(jù)以上數(shù)據(jù),能否有99%以上的把握認(rèn)為“晚上八點至十點時間段是否輔導(dǎo)子女作業(yè)與性別有關(guān)?”.
參考公式:,其中.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】年新型冠狀病毒疫情爆發(fā),貴州省教育廳號召全體學(xué)生“停課不停學(xué)”.自月日起,高三年級學(xué)生通過收看“陽光校園·空中黔課”進行線上網(wǎng)絡(luò)學(xué)習(xí).為了檢測線上網(wǎng)絡(luò)學(xué)習(xí)效果,某中學(xué)隨機抽取名高三年級學(xué)生做“是否準(zhǔn)時提交作業(yè)”的問卷調(diào)查,并組織了一場線上測試,調(diào)查發(fā)現(xiàn)有名學(xué)生每天準(zhǔn)時提交作業(yè),根據(jù)他們的線上測試成績得頻率分布直方圖(如圖所示);另外名學(xué)生偶爾沒有準(zhǔn)時提交作業(yè),根據(jù)他們的線上測試成績得莖葉圖(如圖所示,單位:分)
(1)成績不低于分為等,低于分為非等.完成以下列聯(lián)表,并判斷是否有以上的把握認(rèn)為成績?nèi)〉?/span>等與每天準(zhǔn)時提交作業(yè)有關(guān)?
準(zhǔn)時提交作業(yè)與成績等次列聯(lián)表 | 單位:人 | ||
A等 | 非A等 | 合計 | |
每天準(zhǔn)時提交作業(yè) | |||
偶爾沒有準(zhǔn)時提交作業(yè) | |||
合計 |
(2)成績低于分為不合格,從這名學(xué)生里成績不合格的學(xué)生中再抽取人,其中每天準(zhǔn)時提交作業(yè)的學(xué)生人數(shù)為,求的分布列與數(shù)學(xué)期望.
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)當(dāng)時,求的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時,在上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,回答所提問題:設(shè)函數(shù),①的定義域為,其圖像是一條連續(xù)不斷的曲線;②是偶函數(shù);③在上不是單調(diào)函數(shù);④恰有個零點,寫出符合上述①②④條件的一個函數(shù)的解析式是______;寫出符合上述所有條件的一個函數(shù)的解析式是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】羽毛球比賽中,首局比賽由裁判員采用拋球的方法決定誰先發(fā)球,在每回合爭奪中,贏方得1分且獲得發(fā)球權(quán).每一局中,獲勝規(guī)則如下:①率先得到21分的一方贏得該局比賽;②如果雙方得分出現(xiàn),需要領(lǐng)先對方2分才算該局獲勝;③如果雙方得分出現(xiàn),先取得30分的一方該局獲勝.現(xiàn)甲、乙兩名運動員進行對抗賽,在每回合爭奪中,若甲發(fā)球時,甲得分的概率為;乙發(fā)球時,甲得分的概率為.
(Ⅰ)若,記“甲以贏一局”的概率為,試比較與的大小;
(Ⅱ)根據(jù)對以往甲、乙兩名運動員的比賽進行數(shù)據(jù)分析,得到如下列聯(lián)表部分?jǐn)?shù)據(jù).若不考慮其它因素對比賽的影響,并以表中兩人發(fā)球時甲得分的頻率作為,的值.
甲得分 | 乙得分 | 總計 | |
甲發(fā)球 | 50 | 100 | |
乙發(fā)球 | 60 | 90 | |
總計 | 190 |
①完成列聯(lián)表,并判斷是否有95%的把握認(rèn)為“比賽得分與接、發(fā)球有關(guān)”?
②已知在某局比中,雙方戰(zhàn)成,且輪到乙發(fā)球,記雙方再戰(zhàn)回合此局比賽結(jié)束,求的分布列與期望.
參考公式:,其中.
臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.010 | 0.001 | |
2.072 | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的內(nèi)角A,B,C的對邊長分別等于a,b,c,列舉如下五個條件:①;②;③cosA+cos2A=0;④a=4;⑤△ABC的面積等于.
(1)請在五個條件中選擇一個(只需選擇一個)能夠確定角A大小的條件來求角A;
(2)在(1)的結(jié)論的基礎(chǔ)上,再在所給條件中選擇一個(只需選擇一個),求△ABC周長的取值范圍
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com