已知f(x)是定義在R上的不恒為零的函數(shù),且對(duì)任意的x,y∈R都滿足f(x?y)=x?f(y)+y?f(x),則f(x)是(  )
A、奇函數(shù)B、偶函數(shù)C、不是奇函數(shù)也不是偶函數(shù)D、既是奇函數(shù)又是偶函數(shù)
分析:分別令y=-x與y=x,即可求得f(-x)+f(x)=0,從而得到答案.
解答:解:∵f(x•y)=x•f(y)+y•f(x),
令x=y=-t得:f(t2)=-tf(-t)-tf(-t),①
再令x=y=t得:f(t2)=tf(t)+tf(t),②
由①②得:-tf(-t)-tf(-t)=tf(t)+tf(t),
即2t[f(t)+f(-t)]=0,
∵t不恒為0,
∴f(t)+f(-t)=0,
即f(x)+f(-x)=0,
∴f(-x)=-f(x).
∴f(x)是奇函數(shù),
故選:A.
點(diǎn)評(píng):本題考查抽象函數(shù)及其應(yīng)用,著重考查賦值法,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在(-4,4)上的奇函數(shù),它在定義域內(nèi)單調(diào)遞減 若a滿足f(1-a)+f(2a-3)小于0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若a,b∈[-1,1],a+b≠0時(shí),都有
f(a)+f(b)
a+b
>0

(1)證明函數(shù)a=1在f(x)=-x2+x+lnx上是增函數(shù);
(2)解不等式:f(
1
x-1
)>0,x∈(0,+∞);
(3)若f′(x)=-2x+1+
1
x
=-
2x2-x-1
x
對(duì)所有f'(x)=0,任意x=-
1
2
恒成立,求實(shí)數(shù)x=1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8、已知f(x)是定義在R上的函數(shù),f(1)=1,且對(duì)任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,則g(2009)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在實(shí)數(shù)集R上的增函數(shù),且f(1)=0,函數(shù)g(x)在(-∞,1]上為增函數(shù),在[1,+∞)上為減函數(shù),且g(4)=g(0)=0,則集合{x|f(x)g(x)≥0}=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在(-∞,+∞)上的偶函數(shù),且在(-∞,0)上是增函數(shù),設(shè)a=f(log47),b=f(log
12
3)
,c=f(0.2-0.6),則a,b,c的大小關(guān)系
a>b>c
a>b>c

查看答案和解析>>

同步練習(xí)冊(cè)答案