【題目】已知拋物線E:,圓C:.
若過拋物線E的焦點(diǎn)F的直線l與圓C相切,求直線l方程;
在的條件下,若直線l交拋物線E于A,B兩點(diǎn),x軸上是否存在點(diǎn)使為坐標(biāo)原點(diǎn)?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1);(2)存在定點(diǎn)
【解析】
求得拋物線的焦點(diǎn),設(shè)出直線的方程,運(yùn)用直線和圓相切的條件:,解方程可得所求直線方程;設(shè)出A,B的坐標(biāo),聯(lián)立直線方程和拋物線方程,運(yùn)用韋達(dá)定理和直線的斜率公式,化簡整理,解方程可得t,即M的坐標(biāo),即可得到結(jié)論.
由題意可得拋物線的焦點(diǎn),
當(dāng)直線的斜率不存在時(shí),過F的直線不可能與圓C相切,設(shè)直線的斜率為k,方程設(shè)為,
即,由圓心到直線的距離為,
當(dāng)直線與圓相切時(shí),,解得,
即直線方程為;
可設(shè)直線方程為,,,
聯(lián)立拋物線方程可得,則,,
x軸上假設(shè)存在點(diǎn)使,
即有,可得,
即為,
由,,
可得,
即,即,符合題意;
當(dāng)直線為,由對(duì)稱性可得也符合條件.
所以存在定點(diǎn)使得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種“籠具”由內(nèi),外兩層組成,無下底面,內(nèi)層和外層分別是一個(gè)圓錐和圓柱,其中圓柱與圓錐的底面周長相等,圓柱有上底面,制作時(shí)需要將圓錐的頂端剪去,剪去部分和接頭忽略不計(jì),已知圓柱的底面周長為,高為,圓錐的母線長為.
(1)求這種“籠具”的體積(結(jié)果精確到0.1);
(2)現(xiàn)要使用一種紗網(wǎng)材料制作50個(gè)“籠具”,該材料的造價(jià)為每平方米8元,共需多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)家祖暅提出原理:“冪勢既同,則積不容異”.其中“冪”是截面積,“勢”是幾何體的高.該原理的意思是:夾在兩個(gè)平行平面間的兩個(gè)幾何體,被任一平行于這兩個(gè)平行平面的平面所截,若所截的兩個(gè)截面的面積恒相等,則這兩個(gè)幾何體的體積相等.如圖,在空間直角坐標(biāo)系中的平面內(nèi),若函數(shù)的圖象與軸圍成一個(gè)封閉的區(qū)域,將區(qū)域沿軸的正方向平移8個(gè)單位長度,得到幾何體如圖一,現(xiàn)有一個(gè)與之等高的圓柱如圖二,其底面積與區(qū)域的面積相等,則此圓柱的體積為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形中,,點(diǎn)是中點(diǎn),且,現(xiàn)將三角形沿折起,使點(diǎn)到達(dá)點(diǎn)的位置,且與平面所成的角為.
(1)求證:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
()求函數(shù)的極值點(diǎn).
()設(shè)函數(shù),其中,求函數(shù)在上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,直線,若直線上存在點(diǎn),過點(diǎn)引圓的兩條切線,使得,則實(shí)數(shù)的取值范圍是( )
A. B. [,]
C. D. )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,,,F分別在線段BC和AD上,,將矩形ABEF沿EF折起記折起后的矩形為MNEF,且平面平面ECDF.
Ⅰ求證:平面MFD;
Ⅱ若,求證:;
Ⅲ求四面體NFEC體積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓,分別為其左、右焦點(diǎn),過的直線與此橢圓相交于兩點(diǎn),且的周長為8,橢圓的離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)在平面直角坐標(biāo)系中,已知點(diǎn)與點(diǎn),過的動(dòng)直線(不與軸平行)與橢圓相交于兩點(diǎn),點(diǎn)是點(diǎn)關(guān)于軸的對(duì)稱點(diǎn).求證:
(i)三點(diǎn)共線.
(ii).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四面體中,分別是線段的中點(diǎn),,,,直線與平面所成的角等于.
(Ⅰ)證明:平面平面;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com