(1)過一點向平面引垂線,________叫做這個點在這個平面內的射影;當這一點在平面內時,該點在平面上的射影就是它______;這一點與_______的線段叫做這點到這個平面的_______.如圖所示,直線PQα,Qα,則點Q是______在平面α內的_____,線段_______是點_______到平面α的______.?

(2)一條直線和一個平面相交,但不______時,這條直線就叫做這個平面的_______,斜線與平面的交點叫做_____.從平面外一點向平面引斜線,這點與________間的線段叫做這點到這個平面的_______.如圖所示,直線PRα=R,PR不______于α,直線PRα的一條_____,點R為_______,線段_____是點Pα的______.?

(3)平面外一點到這個平面的垂線段______條,而這點到這個平面的______有無數(shù)條.?

(4)從斜線上斜足以外的一點向平面引垂線,過垂足的直線叫做斜線在這個平面內的_______,________與________間的線段叫做這點到平面的斜線段在這個平面內的________.如圖所示,直線_____是直線PR在平面α上的______,線段______是點P到平面α的斜線段PR在平面α上的射影.?

(5)斜線上任意一點在平面上的射影一定在斜線的_____上.事實上,設a是平面α的斜線,B為斜足,在a上任取一點A,作AA1α,A1是垂足,則A1、B確定的直線a′是a在平面α內的______,如圖所示,設Pa上任意一點,在aAA1確定的平面內,作PP1AA1,PP1必與a′相交于一點P1.∵AA1α__________ ,PP1______________AA1,∴PP1__________α.P1P在平面α上的射影,所以點P在平面α上的射影一定在直線a在平面α上的射影a′上.

(1)垂足 自身 垂足 垂線段 點P 射影 PQ P 垂線段?

(2)和這個平面垂直 斜線 斜足 斜足 斜線段 垂直 斜線 斜足 PR 斜線段?

(3)有且只有一 斜線段?

(4)射影 垂足 斜足 射影 QR 射影 QR?

(5)射影 射影 ⊥ ∥ ⊥


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網已知⊙O:x2+y2=1和點M(4,2).
(Ⅰ)過點M向⊙O引切線l,求直線l的方程;
(Ⅱ)求以點M為圓心,且被直線y=2x-1截得的弦長為4的⊙M的方程;
(Ⅲ)設P為(Ⅱ)中⊙M上任一點,過點P向⊙O引切線,切點為Q.試探究:平面內是否存在一定點R,使得
PQPR
為定值?若存在,請舉出一例,并指出相應的定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆浙江杭州七校高二上學期期中聯(lián)考數(shù)學試卷(解析版) 題型:解答題

已知圓A過點,且與圓B:關于直線對稱.

(1)求圓A的方程;

(2)若HE、HF是圓A的兩條切線,E、F是切點,求的最小值。

(3)過平面上一點向圓A和圓B各引一條切線,切點分別為C、D,設,求證:平面上存在一定點M使得Q到M的距離為定值,并求出該定值.

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓和點.

(1)求以點為圓心,且被軸截得的弦長為的圓⊙的方程;

(2)過點向圓O引切線,求直線的方程;

(3)設為⊙上任一點,過點向圓O引切線,切點為Q. 試探究:平面內是否存在一定點,使得為定值?若存在,請舉出一例,并指出相應的定值;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省蘇州市木瀆高級中學天華學校高三(上)12月月考數(shù)學試卷(解析版) 題型:解答題

已知⊙O:x2+y2=1和點M(4,2).
(Ⅰ)過點M向⊙O引切線l,求直線l的方程;
(Ⅱ)求以點M為圓心,且被直線y=2x-1截得的弦長為4的⊙M的方程;
(Ⅲ)設P為(Ⅱ)中⊙M上任一點,過點P向⊙O引切線,切點為Q.試探究:平面內是否存在一定點R,使得為定值?若存在,請舉出一例,并指出相應的定值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案