【題目】選修4-4坐標系與參數(shù)方程選講

在直角坐標系中,以原點為極點,軸的正半軸為極軸建立極坐標系,已知曲線,過點的直線的參數(shù)方程為為參數(shù)),直線與曲線分別交于,兩點.

(1)寫出曲線的平面直角坐標方程和直線的普通方程:

(2)若成等比數(shù)列,求實數(shù)的值.

【答案】1 ;2。

【解析】

試題得:,即可求得曲線的直角坐標方程,消去參數(shù)得直線的普通方程

將直線的參數(shù)方程代入到曲線的直角坐標方程中可得關(guān)于的二次方程,由成等比數(shù)列,可得,變形后代入韋達定理可得關(guān)于的方程,解出即可得到答案

解析:(1)得:

∴曲線C的直角坐標方程為:(a > 0)

消去參數(shù)t得直線l的普通方程為

(2)解:將直線l的參數(shù)方程代入中得:

6

設(shè)M、N兩點對應(yīng)的參數(shù)分別為t1、t2,則有 8

,∴

,解得

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知點P在圓柱的底面圓上,AB為圓的直徑,圓柱的表面積為20π

(1)求異面直線AP所成角的大小(結(jié)果用反三角函數(shù)值表示);

(2)求點A到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體ABDA1B1C1D1中四邊形A1B1C1D1,ADD1A1ABB1A1均為正方形.點MBD的中點.點H在線段C1M上,且A1H與平面ABD所成角的正弦值為

(Ⅰ)證明:B1D1∥平面BC1D

(Ⅱ)求二面角AA1HB的的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)P是橢圓上一點,M,N分別是兩圓(x+4)2y2=1(x-4)2y2=1上的點,則|PM|+|PN|的最小值、最大值分別為 ( )

A. 9,12 B. 8,11 C. 10,12 D. 8,12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正三角形 的邊長為3, 分別是邊上的點,滿足 (如圖1).將折起到的位置,使平面平面,連接(如圖2).

(1)求證:平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體中,底面為矩形,側(cè)面為梯形,,.

1)求證:

2)求證:平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為.數(shù)列滿足,.

1)若,且,求正整數(shù)的值;

2)若數(shù)列,均是等差數(shù)列,求的取值范圍;

3)若數(shù)列是等比數(shù)列,公比為,且,是否存在正整數(shù),使,,成等差數(shù)列,若存在,求出一個的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】1)已知兩個變量線性相關(guān),若它們的相關(guān)性越強,則相關(guān)系數(shù)的絕對值越接近于1.

2)線性回歸直線必過點

3)對于分類變量AB的隨機變量,越大說明AB有關(guān)系的可信度越大.

4)在刻畫回歸模型的擬合效果時,殘差平方和越小,相關(guān)指數(shù)的值越大,說明擬合的效果越好.

5)根據(jù)最小二乘法由一組樣本點,求得的回歸方程是,對所有的解釋變量,的值一定與有誤差.

以上命題正確的序號為____________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓,直線,直線與橢圓交于不同的兩點,點和點關(guān)于軸對稱,直線軸交于點

1)若點是橢圓的一個焦點,求該橢圓的長軸的長度;

2)若,且,求的值;

3)若,求證:為定值.

查看答案和解析>>

同步練習冊答案