【題目】若函數(shù)滿足:在區(qū)間上均有定義;函數(shù)在區(qū)間上至少有一個零點,則稱上具有關系W.

,判斷上是否具有關系W,并說明理由;

上具有關系W,求實數(shù)m的取值范圍.

【答案】(1)見解析;(2) .

【解析】

(1)根據(jù)[a,b]上至少有一個零點,則稱f(x)和g(x)在區(qū)間[a,b]上具有關系G.利用特殊值但判斷出即可;(2)根據(jù)在區(qū)間[a,b]上具有關系G的性質(zhì),結合x∈[1,4],利用二次函數(shù)的性質(zhì),討論m即可.

(1)f(x)和g(x)在[1,3]具有關系G.

h(x)=f(x)﹣g(x)=lnx+x﹣2,

∵h(1)=﹣1<0,h(2)=ln2>0;

h(1)h(2)<0,又h(x)在[1,2]上連續(xù),

故函數(shù)y=f(x)﹣g(x)在區(qū)間[1,2]上至少有一個零點,

f(x)和g(x)在[1,3]上具有關系G;

(2)令h(x)=f(x)﹣g(x)=2|x﹣2|+1﹣mx2

m≤0時,易知h(x)在[1,4]上不存在零點,

m>0時,h(x)=,

1≤x≤2時,

由二次函數(shù)知h(x)在[1,2]上單調(diào)遞減,

,

m∈[,3],

m∈(0,)∪(3,+∞)時,

m∈(0,),則h(x)在(2,4]上單調(diào)遞增,

h(2)>0,h(4)>0;

故沒有零點;

m∈(3,+∞),則h(x)在(2,4]上單調(diào)遞減,

此時,h(2)=﹣4m+1<0;

故沒有零點;

綜上所述,

f(x)=2|x﹣2|+1g(x)=mx2[1,4]上具有關系G,

m∈[,3].

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在扶貧活動中,為了盡快脫貧(無債務)致富,企業(yè)甲將經(jīng)營狀況良好的某種消費品專賣店以5.8萬元的優(yōu)惠價格轉讓給了尚有5萬元無息貸款沒有償還的小型企業(yè)乙,并約定從該店經(jīng)營的利潤中,首先保證企業(yè)乙的全體職工每月最低生活費的開支3 600元后,逐步償還轉讓費(不計息).在甲提供的資料中:這種消費品的進價為每件14元;該店月銷量Q(百件)與銷售價格P(元)的關系如圖所示;每月需各種開支2 000.

1)當商品的價格為每件多少元時,月利潤扣除職工最低生活費的余額最大?并求最大余額;

2)企業(yè)乙只依靠該店,最早可望在幾年后脫貧?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)是奇函數(shù).

1求常數(shù)的值;

2,試判斷函數(shù)的單調(diào)性,并加以證明;

3,且函數(shù)在區(qū)間上的最小值為,求實數(shù)的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,設橢圓 (a>b>0)的左、右焦點分別為F1 , F2 , 點D在橢圓上.DF1⊥F1F2 , =2 ,△DF1F2的面積為

(1)求橢圓的標準方程;
(2)設圓心在y軸上的圓與橢圓在x軸的上方有兩個交點,且圓在這兩個交點處的兩條切線相互垂直并分別過不同的焦點,求圓的半徑.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)通過調(diào)查問卷(滿分50分)的形式對本企業(yè)900名員工的工作滿意程度進行調(diào)查,并隨機抽取了其中30名員工(16名女工,14名男工)的得分,如下表:

47

36

32

48

34

44

43

47

46

41

43

42

50

43

35

49

37

35

34

43

46

36

38

40

39

32

48

33

40

34

(1)根據(jù)以上數(shù)據(jù),估計該企業(yè)得分大于45分的員工人數(shù);

(2)現(xiàn)用計算器求得這30名員工的平均得分為40.5分,若規(guī)定大于平局得分為 “滿意”,否則為 “不滿意”,請完成下列表格:

“滿意”的人數(shù)

“不滿意”的人數(shù)

合計

女員工

16

男員工

14

合計

30

(3)根據(jù)上述表中數(shù)據(jù),利用獨立性檢驗的方法判斷,能否在犯錯誤的概率不超過1%的前提下,認為該企業(yè)員工“性別”與“工作是否滿意”有關?

參考數(shù)據(jù):

P(K2K)

0.10

0.050

0.025

0.010

0.001

K

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列{an}的前n項和為Sn.已知S2=4,an+1=2Sn+1,n∈N*

(1)求通項公式an;

(2)求數(shù)列{|an-n-2|}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}和{bn}滿足a1a2a3…an= (n∈N*).若{an}為等比數(shù)列,且a1=2,b3=6+b2
(1)求an和bn;
(2)設cn= (n∈N*).記數(shù)列{cn}的前n項和為Sn
(i)求Sn;
(ii)求正整數(shù)k,使得對任意n∈N*均有Sk≥Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學為了解在校本科生對參加某項社會實踐活動的意向,擬采用分層抽樣的方向,從該校四個年級的本科生中抽取一個容量為300的樣本進行調(diào)查,已知該校一年級、二年級、三年級、四年級的本科生人數(shù)之比為4:5:5:6,則應從一年級本科生中抽取名學生.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設等差數(shù)列{an}的公差為d,點(an , bn)在函數(shù)f(x)=2x的圖象上(n∈N*).
(1)若a1=﹣2,點(a8 , 4b7)在函數(shù)f(x)的圖象上,求數(shù)列{an}的前n項和Sn;
(2)若a1=1,函數(shù)f(x)的圖象在點(a2 , b2)處的切線在x軸上的截距為2﹣ ,求數(shù)列{ }的前n項和Tn

查看答案和解析>>

同步練習冊答案